Search Results

Now showing 1 - 10 of 59
Loading...
Thumbnail Image
Item

Graph properties for nonlocal minimal surfaces

2015, Dipierro, Serena, Savin, Ovidiu, Valdinoci, Enrico

In this paper we show that a nonlocal minimal surface which is a graph outside a cylinder is in fact a graph in the whole of the space. As a consequence, in dimension 3, we show that the graph is smooth. The proofs rely on convolution techniques and appropriate integral estimates which show the pointwise validity of an Euler-Lagrange equation related to the nonlocal mean curvature.

Loading...
Thumbnail Image
Item

Strongly nonlocal dislocation dynamics in crystals

2013, Dipierro, Serena, Figalli, Alessio, Valdinoci, Enrico

We consider an equation motivated by crystal dynamics and driven by a strongly nonlocal elliptic operator of fractional type. We study the evolution of the dislocation function for macroscopic space and time scales, by showing that the dislocations have the tendency to concentrate at single points of the crystal, where the size of the slip coincides with the natural periodicity of the medium. We also prove that the motion of these dislocation points is governed by an interior repulsive potential that is superposed to an elastic reaction to the external stress.

Loading...
Thumbnail Image
Item

Local approximation of arbitrary functions by solutions of nonlocal equations

2016, Dipierro, Serena, Savin, Ovidiu, Valdinoci, Enrico

We show that any function can be locally approximated by solutions of prescribed linear equations of nonlocal type. In particular, we show that every function is locally s-caloric, up to a small error. The case of non-elliptic and non-parabolic operators is taken into account as well.

Loading...
Thumbnail Image
Item

A Widder's type theorem for the heat equation with nonlocal diffusion

2013, Barrios, Begoña, Peral, Ireneo, Soria, Fernando, Valdinoci, Enrico

I

Loading...
Thumbnail Image
Item

A density property for fractional weighted Sobolev spaces

2015, Dipierro, Serena, Valdinoci, Enrico

In this paper we show a density property for fractional weighted Sobolev spaces. That is, we prove that any function in a fractional weighted Sobolev space can be approximated by a smooth function with compact support. The additional difficulty in this nonlocal setting is caused by the fact that the weights are not necessarily translation invariant.

Loading...
Thumbnail Image
Item

Overdetermined problems for the fractional Laplacian in exterior and annular sets

2014, Soave, Nicola, Valdinoci, Enrico

We consider a fractional elliptic equation in an unbounded set with both Dirichlet and fractional normal derivative datum prescribed. We prove that the domain and the solution are necessarily radially symmetric. The extension of the result in bounded non-convex regions is also studied, as well as the radial symmetry of the solution when the set is a priori supposed to be rotationally symmetric.

Loading...
Thumbnail Image
Item

Crystal dislocations with different orientations and collisions

2014, Patrizi, Stefania, Valdinoci, Enrico

We study a parabolic differential equation whose solution represents the atom dislocation in a crystal for a general type of Peierls-Nabarro model with possibly long range interactions and an external stress. Differently from the previous literature, we treat here the case in which such dislocation is not the superpositions of transitions all occurring with the same orientations (i.e. opposite orientations are allowed as well). We show that, at a long time scale, and at a macroscopic space scale, the dislocations have the tendency to concentrate as pure jumps at points which evolve in time, driven by the external stress and by a singular potential. Due to differences in the dislocation orientations, these points may collide in finite time.

Loading...
Thumbnail Image
Item

Is a nonlocal diffusion strategy convenient for biological populations in competition?

2015, Massaccesi, Annalisa, Valdinoci, Enrico

We study the convenience of a nonlocal dispersal strategy in a reaction-diffusion system with a fractional Laplacian operator. We show that there are circumstances - namely, a precise condition on the distribution of the resource - under which a nonlocal dispersal behavior is favored. In particular, we consider the linearization of a biological system that models the interaction of two biological species, one with local and one with nonlocal dispersal, that are competing for the same resource. We give a simple, concrete example of resources for which the equilibrium with only the local population becomes linearly unstable. In a sense, this example shows that nonlocal strategies can become successful even in an environment in which purely local strategies are dominant at the beginning, provided that the resource is sufficiently sparse. Indeed, the example considered presents a high variance of the distribu- tion of the dispersal, thus suggesting that the shortage of resources and their unbalanced supply may be some of the basic ingredients that favor nonlocal strategies.

Loading...
Thumbnail Image
Item

Continuity and density results for a one-phase nonlocal free boundary problem

2015, Dipierro, Serena, Valdinoci, Enrico

We consider a one-phase nonlocal free boundary problem obtained by the superposition of a fractional Dirichlet energy plus a nonlocal perimeter functional. We prove that the minimizers are Hölder continuous and the free boundary has positive density from both sides. For this, we also introduce a new notion of fractional harmonic replacement in the extended variables and we study its basic properties.

Loading...
Thumbnail Image
Item

Definition of fractional Laplacian for functions with polynomial growth

2016, Dipierro, Serena, Savin, Ovidiu, Valdinoci, Enrico

We introduce a notion of fractional Laplacian for functions which grow more than linearly at infinity. In such case, the operator is not defined in the classical sense: nevertheless, we can give an ad-hoc definition which can be useful for applications in various fields, such as blowup and free boundary problems. In this setting, when the solution has a polynomial growth at infinity, the right hand side of the equation is not just a function, but an equivalence class of functions modulo polynomials of a fixed order. We also give a sharp version of the Schauder estimates in this framework, in which the full smooth Hölder norm of the solution is controlled in terms of the seminorm of the nonlinearity. Though the method presented is very general and potentially works for general nonlocal operators, for clarity and concreteness we focus here on the case of the fractional Laplacian.