Search Results

Now showing 1 - 10 of 13
  • Item
    Unveiling Relations in the Industry 4.0 Standards Landscape Based on Knowledge Graph Embeddings
    (Cham : Springer, 2020) Rivas, Ariam; Grangel-González, Irlán; Collarana, Diego; Lehmann, Jens; Vidal, Maria-Esther; Hartmann, Sven; Küng, Josef; Kotsis, Gabriele; Tjoa, A Min; Khalil, Ismail
    Industry 4.0 (I4.0) standards and standardization frameworks have been proposed with the goal of empowering interoperability in smart factories. These standards enable the description and interaction of the main components, systems, and processes inside of a smart factory. Due to the growing number of frameworks and standards, there is an increasing need for approaches that automatically analyze the landscape of I4.0 standards. Standardization frameworks classify standards according to their functions into layers and dimensions. However, similar standards can be classified differently across the frameworks, producing, thus, interoperability conflicts among them. Semantic-based approaches that rely on ontologies and knowledge graphs, have been proposed to represent standards, known relations among them, as well as their classification according to existing frameworks. Albeit informative, the structured modeling of the I4.0 landscape only provides the foundations for detecting interoperability issues. Thus, graph-based analytical methods able to exploit knowledge encoded by these approaches, are required to uncover alignments among standards. We study the relatedness among standards and frameworks based on community analysis to discover knowledge that helps to cope with interoperability conflicts between standards. We use knowledge graph embeddings to automatically create these communities exploiting the meaning of the existing relationships. In particular, we focus on the identification of similar standards, i.e., communities of standards, and analyze their properties to detect unknown relations. We empirically evaluate our approach on a knowledge graph of I4.0 standards using the Trans∗ family of embedding models for knowledge graph entities. Our results are promising and suggest that relations among standards can be detected accurately.
  • Item
    Optimizing Federated Queries Based on the Physical Design of a Data Lake
    (Aachen : RWTH, 2020) Rohde, Philipp D.; Vidal, Maria-Esther
    The optimization of query execution plans is known to be crucial for reducing the query execution time. In particular, query optimization has been studied thoroughly for relational databases over the past decades. Recently, the Resource Description Framework (RDF) became popular for publishing data on the Web. As a consequence, federations composed of different data models like RDF and relational databases evolved. One type of these federations are Semantic Data Lakes where every data source is kept in its original data model and semantically annotated with ontologies or controlled vocabularies. However, state-of-the-art query engines for federated query processing over Semantic Data Lakes often rely on optimization techniques tailored for RDF. In this paper, we present query optimization techniques guided by heuristics that take the physical design of a Data Lake into account. The heuristics are implemented on top of Ontario, a SPARQL query engine for Semantic Data Lakes. Using sourcespecific heuristics, the query engine is able to generate more efficient query execution plans by exploiting the knowledge about indexes and normalization in relational databases. We show that heuristics which take the physical design of the Data Lake into account are able to speed up query processing.
  • Item
    Encoding Knowledge Graph Entity Aliases in Attentive Neural Network for Wikidata Entity Linking
    (Berlin ; Heidelberg : Springer, 2020) Mulang’, Isaiah Onando; Singh, Kuldeep; Vyas, Akhilesh; Shekarpour, Saeedeh; Vidal, Maria-Esther; Lehmann, Jens; Auer, Sören; Huang, Zhisheng; Beek, Wouter; Wang, Hua; Zhou, Rui; Zhang, Yanchun
    The collaborative knowledge graphs such as Wikidata excessively rely on the crowd to author the information. Since the crowd is not bound to a standard protocol for assigning entity titles, the knowledge graph is populated by non-standard, noisy, long or even sometimes awkward titles. The issue of long, implicit, and nonstandard entity representations is a challenge in Entity Linking (EL) approaches for gaining high precision and recall. Underlying KG in general is the source of target entities for EL approaches, however, it often contains other relevant information, such as aliases of entities (e.g., Obama and Barack Hussein Obama are aliases for the entity Barack Obama). EL models usually ignore such readily available entity attributes. In this paper, we examine the role of knowledge graph context on an attentive neural network approach for entity linking on Wikidata. Our approach contributes by exploiting the sufficient context from a KG as a source of background knowledge, which is then fed into the neural network. This approach demonstrates merit to address challenges associated with entity titles (multi-word, long, implicit, case-sensitive). Our experimental study shows ≈8% improvements over the baseline approach, and significantly outperform an end to end approach for Wikidata entity linking.
  • Item
    Digital Transformation of Education Credential Processes and Life Cycles – A Structured Overview on Main Challenges and Research Questions
    ([Wilmington, DE, USA] : IARIA, [2020], 2020) Keck, Ingo R.; Vidal, Maria-Esther; Heller, Lambert; Mikroyannidis, Alexander; Chang, Maiga; White, Stephen
    In this article, we look at the challenges that arise in the use and management of education credentials, and from the switch from analogue, paper-based education credentials to digital education credentials. We propose a general methodology to capture qualitative descriptions and measurable quantitative results that allow to estimate the effectiveness of a digital credential management system in solving these challenges. This methodology is applied to the EU H2020 project QualiChain use case, where five pilots have been selected to study a broad field of digital credential workflows and credential management. Copyright (c) IARIA, 2020
  • Item
    Creating and Capturing Artificial Emotions in Autonomous Robots and Software Agents
    (Cham : Springer, 2020) Hoffmann, Claus; Vidal, Maria-Esther; Bielikova, Maria; Mikkonen, Tommi; Pautasso, Cesare
    This paper presents ARTEMIS, a control system for autonomous robots or software agents. ARTEMIS is able to create and capture artificial emotions during interactions with its environment, and we describe the underlying mechanisms for this. The control system also realizes the capturing of knowledge about its past artificial emotions. A specific interpretation of a knowledge graph, called an Agent Knowledge Graph, represents these artificial emotions. For this, we devise a formalism which enriches the traditional factual knowledge in knowledge graphs with the representation of artificial emotions. As proof of concept, we realize a concrete software agent based on the ARTEMIS control system. This software agent acts as a user assistant and executes the user’s orders. The environment of this user assistant consists of autonomous service agents. The execution of user’s orders requires interaction with these autonomous service agents. These interactions lead to artificial emotions within the assistant. The first experiments show that it is possible to realize an autonomous agent with plausible artificial emotions with ARTEMIS and to record these artificial emotions in its Agent Knowledge Graph. In this way, autonomous agents based on ARTEMIS can capture essential knowledge that supports successful planning and decision making in complex dynamic environments and surpass emotionless agents.
  • Item
    Interaction Network Analysis Using Semantic Similarity Based on Translation Embeddings
    (Berlin ; Heidelberg : Springer, 2019) Manzoor Bajwa, Awais; Collarana, Diego; Vidal, Maria-Esther; Acosta, Maribel; Cudré-Mauroux, Philippe; Maleshkova, Maria; Pellegrini, Tassilo; Sack, Harald; Sure-Vetter, York
    Biomedical knowledge graphs such as STITCH, SIDER, and Drugbank provide the basis for the discovery of associations between biomedical entities, e.g., interactions between drugs and targets. Link prediction is a paramount task and represents a building block for supporting knowledge discovery. Although several approaches have been proposed for effectively predicting links, the role of semantics has not been studied in depth. In this work, we tackle the problem of discovering interactions between drugs and targets, and propose SimTransE, a machine learning-based approach that solves this problem effectively. SimTransE relies on translating embeddings to model drug-target interactions and values of similarity across them. Grounded on the vectorial representation of drug-target interactions, SimTransE is able to discover novel drug-target interactions. We empirically study SimTransE using state-of-the-art benchmarks and approaches. Experimental results suggest that SimTransE is competitive with the state of the art, representing, thus, an effective alternative for knowledge discovery in the biomedical domain.
  • Item
    Falcon 2.0: An Entity and Relation Linking Tool over Wikidata
    (New York City, NY : Association for Computing Machinery, 2020) Sakor, Ahmad; Singh, Kuldeep; Patel, Anery; Vidal, Maria-Esther
    The Natural Language Processing (NLP) community has significantly contributed to the solutions for entity and relation recognition from a natural language text, and possibly linking them to proper matches in Knowledge Graphs (KGs). Considering Wikidata as the background KG, there are still limited tools to link knowledge within the text to Wikidata. In this paper, we present Falcon 2.0, the first joint entity and relation linking tool over Wikidata. It receives a short natural language text in the English language and outputs a ranked list of entities and relations annotated with the proper candidates in Wikidata. The candidates are represented by their Internationalized Resource Identifier (IRI) in Wikidata. Falcon 2.0 resorts to the English language model for the recognition task (e.g., N-Gram tiling and N-Gram splitting), and then an optimization approach for the linking task. We have empirically studied the performance of Falcon 2.0 on Wikidata and concluded that it outperforms all the existing baselines. Falcon 2.0 is open source and can be reused by the community; all the required instructions of Falcon 2.0 are well-documented at our GitHub repository (https://github.com/SDM-TIB/falcon2.0). We also demonstrate an online API, which can be run without any technical expertise. Falcon 2.0 and its background knowledge bases are available as resources at https://labs.tib.eu/falcon/falcon2/.
  • Item
    SDM-RDFizer: An RML Interpreter for the Efficient Creation of RDF Knowledge Graphs
    (New York City, NY : Association for Computing Machinery, 2020) Iglesias, Enrique; Jozashoori, Samaneh; Chaves-Fraga, David; Collarana, Diego; Vidal, Maria-Esther
    In recent years, the amount of data has increased exponentially, and knowledge graphs have gained attention as data structures to integrate data and knowledge harvested from myriad data sources. However, data complexity issues like large volume, high-duplicate rate, and heterogeneity usually characterize these data sources, being required data management tools able to address the negative impact of these issues on the knowledge graph creation process. In this paper, we propose the SDM-RDFizer, an interpreter of the RDF Mapping Language (RML), to transform raw data in various formats into an RDF knowledge graph. SDM-RDFizer implements novel algorithms to execute the logical operators between mappings in RML, allowing thus to scale up to complex scenarios where data is not only broad but has a high-duplication rate. We empirically evaluate the SDM-RDFizer performance against diverse testbeds with diverse configurations of data volume, duplicates, and heterogeneity. The observed results indicate that SDM-RDFizer is two orders of magnitude faster than state of the art, thus, meaning that SDM-RDFizer an interoperable and scalable solution for knowledge graph creation. SDM-RDFizer is publicly available as a resource through a Github repository and a DOI.
  • Item
    A Data-Driven Approach for Analyzing Healthcare Services Extracted from Clinical Records
    (Piscataway, NJ : IEEE, 2020) Scurti, Manuel; Menasalvas-Ruiz, Ernestina; Vidal, Maria-Esther; Torrente, Maria; Vogiatzis, Dimitrios; Paliouras, George; Provencio, Mariano; Rodríguez-González, Alejandro; Seco de Herrera, Alba García; Rodríguez González, Alejandro; Santosh, K.C.; Temesgen, Zelalem; Soda, Paolo
    Cancer remains one of the major public health challenges worldwide. After cardiovascular diseases, cancer is one of the first causes of death and morbidity in Europe, with more than 4 million new cases and 1.9 million deaths per year. The suboptimal management of cancer patients during treatment and subsequent follows up are major obstacles in achieving better outcomes of the patients and especially regarding cost and quality of life In this paper, we present an initial data-driven approach to analyze the resources and services that are used more frequently by lung-cancer patients with the aim of identifying where the care process can be improved by paying a special attention on services before diagnosis to being able to identify possible lung-cancer patients before they are diagnosed and by reducing the length of stay in the hospital. Our approach has been built by analyzing the clinical notes of those oncological patients to extract this information and their relationships with other variables of the patient. Although the approach shown in this manuscript is very preliminary, it shows that quite interesting outcomes can be derived from further analysis. © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
  • Item
    Preface
    (Aachen, Germany : RWTH Aachen, 2019) Kaffee, Lucie-Aimee; Endris, Kemele M.; Vidal, Maria-Esther; Comerio, Marco; Sadeghi, Mersedeh; Chaves-Fraga; David, Colpaert Pieter; Kaffee, Lucie Aimée; Endris, Kemele M.; Vidal, María-Esther; Comerio, Marco; Sadeghi, Mersedeh; Chaves-Fraga, David; Colpaert, Pieter
    This volumne presents the proceedings of the 1st International Workshop on Approaches for Making Data Interoperable (AMAR 2019) and 1st International Workshop on Semantics for Transport (Sem4Tra) held in Karlsruhe, Germany, September 9, 2019, co-located with SEMANTiCS 2019. Interoperability of data is an important factor to make transportation data accessible, therefore we present the topics alongside each other in this proceedings.