Encoding Knowledge Graph Entity Aliases in Attentive Neural Network for Wikidata Entity Linking


The collaborative knowledge graphs such as Wikidata excessively rely on the crowd to author the information. Since the crowd is not bound to a standard protocol for assigning entity titles, the knowledge graph is populated by non-standard, noisy, long or even sometimes awkward titles. The issue of long, implicit, and nonstandard entity representations is a challenge in Entity Linking (EL) approaches for gaining high precision and recall. Underlying KG in general is the source of target entities for EL approaches, however, it often contains other relevant information, such as aliases of entities (e.g., Obama and Barack Hussein Obama are aliases for the entity Barack Obama). EL models usually ignore such readily available entity attributes. In this paper, we examine the role of knowledge graph context on an attentive neural network approach for entity linking on Wikidata. Our approach contributes by exploiting the sufficient context from a KG as a source of background knowledge, which is then fed into the neural network. This approach demonstrates merit to address challenges associated with entity titles (multi-word, long, implicit, case-sensitive). Our experimental study shows ≈8% improvements over the baseline approach, and significantly outperform an end to end approach for Wikidata entity linking.

Knowledge graph context, Wikidata, Entity linking
Mulang’, I. O., Singh, K., Vyas, A., Shekarpour, S., Vidal, M.-E., Lehmann, J., & Auer, S. (2020). Encoding Knowledge Graph Entity Aliases in Attentive Neural Network for Wikidata Entity Linking (Z. Huang, W. Beek, H. Wang, R. Zhou, & Y. Zhang, eds.). Berlin ; Heidelberg : Springer. https://doi.org//10.1007/978-3-030-62005-9_24
Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.