Search Results

Now showing 1 - 8 of 8
  • Item
    Towards CMOS integrated microfluidics using dielectrophoretic immobilization
    (Basel : MDPI, 2019) Ettehad, Honeyeh Matbaechi; Yadav, Rahul Kumar; Guha, Subhajit; Wenger, Christian
    Dielectrophoresis (DEP) is a nondestructive and noninvasive method which is favorable for point-of-care medical diagnostic tests. This technique exhibits prominent relevance in a wide range of medical applications wherein the miniaturized platform for manipulation (immobilization, separation or rotation), and detection of biological particles (cells or molecules) can be conducted. DEP can be performed using advanced planar technologies, such as complementary metal-oxide-semiconductor (CMOS) through interdigitated capacitive biosensors. The dielectrophoretically immobilization of micron and submicron size particles using interdigitated electrode (IDE) arrays is studied by finite element simulations. The CMOS compatible IDEs have been placed into the silicon microfluidic channel. A rigorous study of the DEP force actuation, the IDE’s geometrical structure, and the fluid dynamics are crucial for enabling the complete platform for CMOS integrated microfluidics and detection of micron and submicron-sized particle ranges. The design of the IDEs is performed by robust finite element analyses to avoid time-consuming and costly fabrication processes. To analyze the preliminary microfluidic test vehicle, simulations were first performed with non-biological particles. To produce DEP force, an AC field in the range of 1 to 5 V (peak-to-peak) is applied to the IDE. The impact of the effective external and internal properties, such as actuating DEP frequency and voltage, fluid flow velocity, and IDE’s geometrical parameters are investigated. The IDE based system will be used to immobilize and sense particles simultaneously while flowing through the microfluidic channel. The sensed particles will be detected using the capacitive sensing feature of the biosensor. The sensing and detecting of the particles are not in the scope of this paper and will be described in details elsewhere. However, to provide a complete overview of this system, the working principles of the sensor, the readout detection circuit, and the integration process of the silicon microfluidic channel are briefly discussed. © 2019 by the authors.
  • Item
    A Review on Passive and Integrated Near-Field Microwave Biosensors
    (Basel : MDPI, 2017) Guha, Subhajit; Jamal, Farabi Ibne; Wenger, Christian
    In this paper we review the advancement of passive and integrated microwave biosensors. The interaction of microwave with biological material is discussed in this paper. Passive microwave biosensors are microwave structures, which are fabricated on a substrate and are used for sensing biological materials. On the other hand, integrated biosensors are microwave structures fabricated in standard semiconductor technology platform (CMOS or BiCMOS). The CMOS or BiCMOS sensor technology offers a more compact sensing approach which has the potential in the future for point of care testing systems. Various applications of the passive and the integrated sensors have been discussed in this review paper.
  • Item
    Design and Fabrication of a BiCMOS Dielectric Sensor for Viscosity Measurements: A Possible Solution for Early Detection of COPD
    (Basel : MDPI, 2018) Soltani Zarrin, Pouya; Jamal, Farabi Ibne; Guha, Subhajit; Wessel, Jan; Kissinger, Dietmar; Wenger, Christian
    The viscosity variation of sputum is a common symptom of the progression of Chronic Obstructive Pulmonary Disease (COPD). Since the hydration of the sputum defines its viscosity level, dielectric sensors could be used for the characterization of sputum samples collected from patients for early diagnosis of COPD. In this work, a CMOS-based dielectric sensor for the real-time monitoring of sputum viscosity was designed and fabricated. A proper packaging for the ESD-protection and short-circuit prevention of the sensor was developed. The performance evaluation results show that the radio frequency sensor is capable of measuring dielectric constant of biofluids with an accuracy of 4.17%. Integration of this sensor into a portable system will result in a hand-held device capable of measuring viscosity of sputum samples of COPD-patients for diagnostic purposes.
  • Item
    Current Modulation of a Heterojunction Structure by an Ultra-Thin Graphene Base Electrode
    (Basel : MDPI, 2018) Alvarado Chavarin, Carlos; Strobel, Carsten; Kitzmann, Julia; Di Bartolomeo, Antonio; Lukosius, Mindaugas; Albert, Matthias; Bartha, Johann Wolfgang; Wenger, Christian
    Graphene has been proposed as the current controlling element of vertical transport in heterojunction transistors, as it could potentially achieve high operation frequencies due to its metallic character and 2D nature. Simulations of graphene acting as a thermionic barrier between the transport of two semiconductor layers have shown cut-off frequencies larger than 1 THz. Furthermore, the use of n-doped amorphous silicon, (n)-a-Si:H, as the semiconductor for this approach could enable flexible electronics with high cutoff frequencies. In this work, we fabricated a vertical structure on a rigid substrate where graphene is embedded between two differently doped (n)-a-Si:H layers deposited by very high frequency (140 MHz) plasma-enhanced chemical vapor deposition. The operation of this heterojunction structure is investigated by the two diode-like interfaces by means of temperature dependent current-voltage characterization, followed by the electrical characterization in a three-terminal configuration. We demonstrate that the vertical current between the (n)-a-Si:H layers is successfully controlled by the ultra-thin graphene base voltage. While current saturation is yet to be achieved, a transconductance of ~230 μS was obtained, demonstrating a moderate modulation of the collector-emitter current by the ultra-thin graphene base voltage. These results show promising progress towards the application of graphene base heterojunction transistors.
  • Item
    Towards the Growth of Hexagonal Boron Nitride on Ge(001)/Si Substrates by Chemical Vapor Deposition
    (Basel : MDPI, 2022) Franck, Max; Dabrowski, Jaroslaw; Schubert, Markus Andreas; Wenger, Christian; Lukosius, Mindaugas
    The growth of hexagonal boron nitride (hBN) on epitaxial Ge(001)/Si substrates via high-vacuum chemical vapor deposition from borazine is investigated for the first time in a systematic manner. The influences of the process pressure and growth temperature in the range of 10−7–10−3 mbar and 900–980 °C, respectively, are evaluated with respect to morphology, growth rate, and crystalline quality of the hBN films. At 900 °C, nanocrystalline hBN films with a lateral crystallite size of ~2–3 nm are obtained and confirmed by high-resolution transmission electron microscopy images. X-ray photoelectron spectroscopy confirms an atomic N:B ratio of 1 ± 0.1. A three-dimensional growth mode is observed by atomic force microscopy. Increasing the process pressure in the reactor mainly affects the growth rate, with only slight effects on crystalline quality and none on the principle growth mode. Growth of hBN at 980 °C increases the average crystallite size and leads to the formation of 3–10 well-oriented, vertically stacked layers of hBN on the Ge surface. Exploratory ab initio density functional theory simulations indicate that hBN edges are saturated by hydrogen, and it is proposed that partial de-saturation by H radicals produced on hot parts of the set-up is responsible for the growth.
  • Item
    Optimization of Multi-Level Operation in RRAM Arrays for In-Memory Computing
    (Basel : MDPI, 2021) Pérez, Eduardo; Pérez-Ávila, Antonio Javier; Romero-Zaliz, Rocío; Mahadevaiah, Mamathamba Kalishettyhalli; Pérez-Bosch Quesada, Emilio; Roldán, Juan Bautista; Jiménez-Molinos, Francisco; Wenger, Christian
    Accomplishing multi-level programming in resistive random access memory (RRAM) arrays with truly discrete and linearly spaced conductive levels is crucial in order to implement synaptic weights in hardware-based neuromorphic systems. In this paper, we implemented this feature on 4-kbit 1T1R RRAM arrays by tuning the programming parameters of the multi-level incremental step pulse with verify algorithm (M-ISPVA). The optimized set of parameters was assessed by comparing its results with a non-optimized one. The optimized set of parameters proved to be an effective way to define non-overlapped conductive levels due to the strong reduction of the device-to-device variability as well as of the cycle-to-cycle variability, assessed by inter-levels switching tests and during 1 k reset-set cycles. In order to evaluate this improvement in real scenarios, the experimental characteristics of the RRAM devices were captured by means of a behavioral model, which was used to simulate two different neuromorphic systems: an 8 × 8 vector-matrix-multiplication (VMM) accelerator and a 4-layer feedforward neural network for MNIST database recognition. The results clearly showed that the optimization of the programming parameters improved both the precision of VMM results as well as the recognition accuracy of the neural network in about 6% compared with the use of non-optimized parameters.
  • Item
    Graphene Schottky Junction on Pillar Patterned Silicon Substrate
    (Basel : MDPI, 2019) Luongo, Giuseppe; Grillo, Alessandro; Giubileo, Filippo; Iemmo, Laura; Lukosius, Mindaugas; Chavarin, Carlos Alvarado; Wenger, Christian; Di Bartolomeo, Antonio
    A graphene/silicon junction with rectifying behaviour and remarkable photo-response was fabricated by transferring a graphene monolayer on a pillar-patterned Si substrate. The device forms a 0.11 eV Schottky barrier with 2.6 ideality factor at room temperature and exhibits strongly biasand temperature-dependent reverse current. Below room temperature, the reverse current grows exponentially with the applied voltage because the pillar-enhanced electric field lowers the Schottky barrier. Conversely, at higher temperatures, the charge carrier thermal generation is dominant and the reverse current becomes weakly bias-dependent. A quasi-saturated reverse current is similarly observed at room temperature when the charge carriers are photogenerated under light exposure. The device shows photovoltaic effect with 0.7% power conversion efficiency and achieves 88 A/W photoresponsivity when used as photodetector. © 2019 by the authors.
  • Item
    Modulating the Filamentary-Based Resistive Switching Properties of HfO2 Memristive Devices by Adding Al2O3 Layers
    (Basel : MDPI, 2022) Kalishettyhalli Mahadevaiah, Mamathamba; Perez, Eduardo; Lisker, Marco; Schubert, Markus Andreas; Perez-Bosch Quesada, Emilio; Wenger, Christian; Mai, Andreas
    The resistive switching properties of HfO2 based 1T-1R memristive devices are electrically modified by adding ultra-thin layers of Al2 O3 into the memristive device. Three different types of memristive stacks are fabricated in the 130 nm CMOS technology of IHP. The switching properties of the memristive devices are discussed with respect to forming voltages, low resistance state and high resistance state characteristics and their variabilities. The experimental I–V characteristics of set and reset operations are evaluated by using the quantum point contact model. The properties of the conduction filament in the on and off states of the memristive devices are discussed with respect to the model parameters obtained from the QPC fit.