Search Results

Now showing 1 - 10 of 15
  • Item
    High-throughput screening Raman microspectroscopy for assessment of drug-induced changes in diatom cells
    (Cambridge : Royal Society of Chemistry, 2019) Rüger J.; Mondol A.S.; Schie I.W.; Popp J.; Krafft C.
    High-throughput screening Raman spectroscopy (HTS-RS) with automated localization algorithms offers unsurpassed speed and sensitivity to investigate the effect of dithiothreitol on the diatom Phaedactylum tricornutum. The HTS-RS capability that was demonstrated for this model system can be transferred to unmet analytical applications such as kinetic in vivo studies of microalgal assemblages. © 2019 The Royal Society of Chemistry.
  • Item
    Recent advances in single molecule magnetism of dysprosium-metallofullerenes
    (Cambridge : Royal Society of Chemistry, 2019) Spree, L.; Popov, A.A.
    This article outlines the magnetic properties of single molecule magnets based on Dy-encapsulating endohedral metallofullerenes. The factors that govern these properties, such as the influence of different non-metal species in clusterfullerenes, the cage size, and cage isomerism are discussed, as well as the recent successful isolation of dimetallofullerenes with unprecedented magnetic properties. Finally, recent advances towards the organization of endohedral metallofullerenes in 1D, 2D, and 3D ordered structures with potential for devices are reviewed.
  • Item
    Engineering Kitaev exchange in stacked iridate layers: Impact of inter-layer species on in-plane magnetism
    (Cambridge : Royal Society of Chemistry, 2019) Yadav, R.; Eldeeb, M.S.; Ray, R.; Aswartham, S.; Sturza, M.I.; Nishimoto, S.; Van Den Brink, J.; Hozoi, L.
    Novel functionalities may be achieved in oxide electronics by appropriate stacking of planar oxide layers of different metallic species, MOp and M′Oq. The simplest mechanism allowing the tailoring of the electronic states and physical properties of such heterostructures is of electrostatic nature - charge imbalance between the M and M′ cations. Here we clarify the effect of interlayer electrostatics on the anisotropic Kitaev exchange in H3LiIr2O6, a recently proposed realization of the Kitaev spin liquid. By quantum chemical calculations, we show that the precise position of H+ cations between magnetically active [LiIr2O6]3- honeycomb-like layers has a strong impact on the magnitude of Kitaev interactions. In particular, it is found that stacking with straight interlayer O-H-O links is detrimental to in-plane Kitaev exchange since coordination by a single H-ion of the O ligand implies an axial Coulomb potential at the O site and unfavorable polarization of the O 2p orbitals mediating the Ir-Ir interactions. Our results therefore provide valuable guidelines for the rational design of Kitaev quantum magnets, indicating unprecedented Kitaev interactions of ≈40 meV if the linear interlayer linkage is removed.
  • Item
    Towards efficient initiators for two-photon induced polymerization: Fine tuning of the donor/acceptor properties
    (Cambridge : Royal Society of Chemistry, 2019) Holzer, Brigitte; Lunzer, Markus; Rosspeintner, Arnulf; Licari, Giuseppe; Tromayer, Maximilian; Naumov, Sergej; Lumpi, Daniel; Horkel, Ernst; Hametner, Christian; Ovsianikov, Aleksandr; Liska, Robert; Vauthey, Eric; Fröhlich, Johannes
    In this work we present the design, synthesis and systematic investigation of the optical properties of symmetric triphenylamine (TPA)-substituted thiophenes. The use of electron-donating (-OMe, -tBu, -Me, -TMS), -neutral (-H) or -withdrawing (-F, -CN, -SO2Me) substituents gives rise to D-A-D based two-photon absorption (2PA) chromophores. The photophysical properties of these compounds, including one-photon absorption and 2PA using two-photon-excited fluorescence, were investigated in different organic solvents with varying polarity. The maximum 2PA cross sections prove to be strongly dependent on the nature of the TPA substituent and range between ~173 GM (Goeppert-Mayer units) and 379 GM. Although most of the investigated substances also exhibit high fluorescence quantum yields, two-photon absorption screening tests of an acrylate monomer formulation revealed the efficiency of these materials as 2PA photoinitiators. These results are supported by quantum chemical calculations of the spin density distribution indicating that the mechanism of polymerization initiation using acrylate monomer is favored by strong localization of the unpaired electrons in the triplet state on the C2 carbon of the thiophene moiety. © 2019 The Royal Society of Chemistry.
  • Item
    Glow discharge optical emission spectrometry for quantitative depth profiling of CIGS thin-films
    (Cambridge : Royal Society of Chemistry, 2019) Kodalle, T.; Greiner, D.; Brackmann, V.; Prietzel, K.; Scheu, A.; Bertram, T.; Reyes-Figueroa, P.; Unold, T.; Abou-Ras, D.; Schlatmann, R.; Kaufmann, C.A.; Hoffmann, V.
    Determining elemental distributions dependent on the thickness of a sample is of utmost importance for process optimization in different fields e.g. from quality control in the steel industry to controlling doping profiles in semiconductor labs. Glow discharge optical emission spectrometry (GD-OES) is a widely used tool for fast measurements of depth profiles. In order to be able to draw profound conclusions from GD-OES profiles, one has to optimize the measurement conditions for the given application as well as to ensure the suitability of the used emission lines. Furthermore a quantification algorithm has to be implemented to convert the measured properties (intensity of the emission lines versus sputtering time) to more useful parameters, e.g. the molar fractions versus sample depth (depth profiles). In this contribution a typical optimization procedure of the sputtering parameters is adapted to the case of polycrystalline Cu(In,Ga)(S,Se)2 thin films, which are used as absorber layers in solar cell devices, for the first time. All emission lines used are shown to be suitable for the quantification of the depth profiles and a quantification routine based on the assumption of constant emission yield is used. The accuracy of this quantification method is demonstrated on the basis of several examples. The bandgap energy profile of the compound semiconductor, as determined by the elemental distributions, is compared to optical measurements. The depth profiles of Na-the main dopant in these compounds-are correlated with measurements of the open-circuit voltage of the corresponding devices, and the quantification of the sample depth is validated by comparison with profilometry and X-ray fluorescence measurements.
  • Item
    PTFEP-Al2O3 hybrid nanowires reducing thrombosis and biofouling
    (Cambridge : Royal Society of Chemistry, 2019) Haidar, Ayman; Ali, Awadelkareem A.; Veziroglu, Salih; Fiutowski, Jacek; Eichler, Hermann; Müller, Isabelle; Kiefer, Karin; Faupel, Franz; Bischoff, Markus; Veith, Michael; Aktas, Oral Cenk; Abdul-Khaliq, Hashim
    Thrombosis and bacterial infection are major problems in cardiovascular implants. Here we demonstrated that a superhydrophobic surface composed of poly(bis(2,2,2-trifluoroethoxy)phosphazene) (PTFEP)-Al2O3 hybrid nanowires (NWs) is effective to reduce both platelet adhesion/activation and bacterial adherence/colonization. The proposed approach allows surface modification of cardiovascular implants which have 3D complex geometries. © 2019 The Royal Society of Chemistry.
  • Item
    Top-down fabrication of ordered arrays of GaN nanowires by selective area sublimation
    (Cambridge : Royal Society of Chemistry, 2019) Fernández-Garrido, Sergio; Auzelle, Thomas; Lähnemann, Jonas; Wimmer, Kilian; Tahraoui, Abbes; Brandt, Oliver
    We demonstrate the top-down fabrication of ordered arrays of GaN nanowires by selective area sublimation of pre-patterned GaN(0001) layers grown by hydride vapor phase epitaxy on Al2O3. Arrays with nanowire diameters and spacings ranging from 50 to 90 nm and 0.1 to 0.7 µm, respectively, are simultaneously produced under identical conditions. The sublimation process, carried out under high vacuum conditions, is analyzed in situ by reflection high-energy electron diffraction and line-of-sight quadrupole mass spectrometry. During the sublimation process, the GaN(0001) surface vanishes, giving way to the formation of semi-polar {1103} facets which decompose congruently following an Arrhenius temperature dependence with an activation energy of (3.54 ± 0.07) eV and an exponential prefactor of 1.58 × 1031 atoms per cm2 per s. The analysis of the samples by lowerature cathodoluminescence spectroscopy reveals that, in contrast to dry etching, the sublimation process does not introduce nonradiative recombination centers at the nanowire sidewalls. This technique is suitable for the top-down fabrication of a variety of ordered nanostructures, and could possibly be extended to other material systems with similar crystallographic properties such as ZnO. © 2019 The Royal Society of Chemistry.
  • Item
    Phase change thin films for non-volatile memory applications
    (Cambridge : Royal Society of Chemistry, 2019) Lotnyk, A.; Behrens, M.; Rauschenbach, B.
    The rapid development of Internet of Things devices requires real time processing of a huge amount of digital data, creating a new demand for computing technology. Phase change memory technology based on chalcogenide phase change materials meets many requirements of the emerging memory applications since it is fast, scalable and non-volatile. In addition, phase change memory offers multilevel data storage and can be applied both in neuro-inspired and all-photonic in-memory computing. Furthermore, phase change alloys represent an outstanding class of functional materials having a tremendous variety of industrially relevant characteristics and exceptional material properties. Many efforts have been devoted to understanding these properties with the particular aim to design universal memory. This paper reviews materials science aspects of chalcogenide-based phase change thin films relevant for non-volatile memory applications. Particular emphasis is put on local structure, control of disorder and its impact on material properties, order-disorder transitions and interfacial transformations. © 2019 The Royal Society of Chemistry.
  • Item
    Solvent influence on the surface morphology of P3HT thin films revealed by photoemission electron microscopy
    (Cambridge : Royal Society of Chemistry, 2019) Niefind, Falk; Karande, Shubhangi; Frost, Frank; Abel, Bernd; Kahnt, Axel
    Only rigorous understanding of the relationship between the nanoscale morphology of organic thin films and the performance of the devices built from them will ultimately lead to design rules that can guide a structured development on the field of organic electronics. Despite great effort, unraveling the nanoscale structure of the films is still a challenge in itself. Here we demonstrate that photoemission electron microscopy can provide valuable insights into the chain orientation, domains size and grain boundary characteristics of P3HT films spun cast from different solvents at room as well as at elevated temperatures. © 2019 The Royal Society of Chemistry.
  • Item
    Reconfigurable assembly of charged polymer-modified Janus and non-Janus particles: From half-raspberries to colloidal clusters and chains
    (Cambridge : Royal Society of Chemistry, 2019) Marschelke, Claudia; Diring, Olga; Synytska, Alla
    Understanding the dynamic and reversible assembly of colloids and particles into complex constructs, inspired by natural phenomena, is of fundamental significance for the fabrication of multi-scale responsive and reconfigurable materials. In this work, we investigate the pH-triggered and reconfigurable assembly of structures composed of binary mixtures of oppositely charged polyacrylic acid (PAA)-modified non-Janus and poly(2-dimethylamino)ethyl methacrylate (PDMAEMA)/poly(N-isopropylacrylamide) (PNIPAM)-modified Janus particles driven by electrostatic interactions. Three different target structures are visible both in dispersions and in dry state: half-raspberry structures, colloidal clusters and colloidal chains depending on the mass, numerical and particle size ratio. All formed structures are well-defined and stable in a certain pH range. Half-raspberry-like structures are obtained at pH 6 and numerical ratios NJP/PAA-HP of 1 : 500 (for 200-PAA-HP), 1 : 44 (for 450-PAA-HP) and 1 : 15 (for 650-PAA-HP), respectively, due to electrostatic interactions between the central JP and the excessive PAA-HP. Colloidal chains and cluster-like structures are generated at numerical ratios NJP/PAA-HP of 4 : 5 (for 200-PAA-HP), 4 : 3 (for 450-PAA-HP), and 4 : 1 (for 650-PAA-HP). Moreover, the smaller the size of a "connecting" PAA colloid, the larger is the average length of a colloidal chain. Depending on the particle size ratio SJP/PAA-HP, some of the observed structures can be disassembled on demand by changing the pH value either close to the IEP of the PDMAEMA (for half-raspberries) or PAA (for colloidal clusters and chains) and then reassembled into new stable structures many times. The obtained results open a pathway to pH-controlled reconfigurable assembly of a binary mixture composed of polymeric-modified non-Janus and Janus particles, which allow the reuse of particle building blocks. © 2019 The Royal Society of Chemistry.