Search Results

Now showing 1 - 2 of 2
  • Item
    Direct Observation of Shock-Induced Disordering of Enstatite Below the Melting Temperature
    (Hoboken, NJ [u.a.] : Wiley, 2020) Hernandez, J.-A.; Morard, G.; Guarguaglini, M.; Alonso-Mori, R.; Benuzzi-Mounaix, A.; Bolis, R.; Fiquet, G.; Galtier, E.; Gleason, A.E.; Glenzer, S.; Guyot, F.; Ko, B.; Lee, H.J.; Mao, W.L.; Nagler, B.; Ozaki, N.; Schuster, A.K.; Shim, S.H.; Vinci, T.; Ravasio, A.
    We report in situ structural measurements of shock-compressed single crystal orthoenstatite up to 337 Â± 55 GPa on the Hugoniot, obtained by coupling ultrafast X-ray diffraction to laser-driven shock compression. Shock compression induces a disordering of the crystalline structure evidenced by the appearance of a diffuse X-ray diffraction signal at nanosecond timescales at 80 Â± 13 GPa on the Hugoniot, well below the equilibrium melting pressure (>170 GPa). The formation of bridgmanite and post-perovskite have been indirectly reported in microsecond-scale plate-impact experiments. Therefore, we interpret the high-pressure disordered state we observed at nanosecond scale as an intermediate structure from which bridgmanite and post-perovskite crystallize at longer timescales. This evidence of a disordered structure of MgSiO3 on the Hugoniot indicates that the degree of polymerization of silicates is a key parameter to constrain the actual thermodynamics of shocks in natural environments. © 2020. The Authors.
  • Item
    Coexistence of Superconductivity and Charge Density Waves in Tantalum Disulfide : Experiment and Theory
    (College Park, Md. : APS, 2020) Kvashnin, Y.; VanGennep, D.; Mito, M.; Medvedev, S.A.; Thiyagarajan, R.; Karis, O.; Vasiliev, A.N.; Eriksson, O.; Abdel-Hafiez, M.
    The coexistence of charge density wave (CDW) and superconductivity in tantalum disulfide (2H-TaS2) at low temperature is boosted by applying hydrostatic pressures to study both vibrational and magnetic transport properties. Around Pc, we observe a superconducting dome with a maximum superconducting transition temperature Tc=9.1 K. First-principles calculations of the electronic structure predict that, under ambient conditions, the undistorted structure is characterized by a phonon instability at finite momentum close to the experimental CDW wave vector. Upon compression, this instability is found to disappear, indicating the suppression of CDW order. The calculations reveal an electronic topological transition (ETT), which occurs before the suppression of the phonon instability, suggesting that the ETT alone is not directly causing the structural change in the system. The temperature dependence of the first vortex penetration field has been experimentally obtained by two independent methods. While a d wave and single-gap BCS prediction cannot describe the lower critical field Hc1 data, the temperature dependence of the Hc1 can be well described by a single-gap anisotropic s-wave order parameter. © 2020 authors. Published by the American Physical Society.