Direct Observation of Shock-Induced Disordering of Enstatite Below the Melting Temperature

Loading...
Thumbnail Image

Date

Volume

47

Issue

15

Journal

Geophysical Research Letters

Series Titel

Book Title

Publisher

Hoboken, NJ [u.a.] : Wiley

Link to publishers version

Abstract

We report in situ structural measurements of shock-compressed single crystal orthoenstatite up to 337 ± 55 GPa on the Hugoniot, obtained by coupling ultrafast X-ray diffraction to laser-driven shock compression. Shock compression induces a disordering of the crystalline structure evidenced by the appearance of a diffuse X-ray diffraction signal at nanosecond timescales at 80 ± 13 GPa on the Hugoniot, well below the equilibrium melting pressure (>170 GPa). The formation of bridgmanite and post-perovskite have been indirectly reported in microsecond-scale plate-impact experiments. Therefore, we interpret the high-pressure disordered state we observed at nanosecond scale as an intermediate structure from which bridgmanite and post-perovskite crystallize at longer timescales. This evidence of a disordered structure of MgSiO3 on the Hugoniot indicates that the degree of polymerization of silicates is a key parameter to constrain the actual thermodynamics of shocks in natural environments. © 2020. The Authors.

Description

Keywords

License

CC BY 4.0 Unported