Search Results

Now showing 1 - 2 of 2
  • Item
    Scanning electron microscopy preparation of the cellular actin cortex: A quantitative comparison between critical point drying and hexamethyldisilazane drying
    (San Francisco, California, US : PLOS, 2021) Schu, Moritz; Terriac, Emmanuel; Koch, Marcus; Paschke, Stephan; Lautenschläger, Franziska; Flormann, Daniel A.D.
    The cellular cortex is an approximately 200-nm-thick actin network that lies just beneath the cell membrane. It is responsible for the mechanical properties of cells, and as such, it is involved in many cellular processes, including cell migration and cellular interactions with the environment. To develop a clear view of this dense structure, high-resolution imaging is essential. As one such technique, electron microscopy, involves complex sample preparation procedures. The final drying of these samples has significant influence on potential artifacts, like cell shrinkage and the formation of artifactual holes in the actin cortex. In this study, we compared the three most used final sample drying procedures: critical-point drying (CPD), CPD with lens tissue (CPD-LT), and hexamethyldisilazane drying. We show that both hexamethyldisilazane and CPD-LT lead to fewer artifactual mesh holes within the actin cortex than CPD. Moreover, CPD-LT leads to significant reduction in cell height compared to hexamethyldisilazane and CPD. We conclude that the final drying procedure should be chosen according to the reduction in cell height, and so CPD-LT, or according to the spatial separation of the single layers of the actin cortex, and so hexamethyldisilazane.
  • Item
    Recombinant phage coated 1D Al2O3 nanostructures for controlling the adhesion and proliferation of endothelial cells
    (New York [u.a.] : Hindawi, 2015) Lee, Juseok; Jeon, Hojeong; Haidar, Ayman; Abdul-Khaliq, Hashim; Veith, Michael; Aktas, Cenk; Kim, Youngjun
    A novel synthesis of a nanostructured cell adhesive surface is investigated for future stent developments. One-dimensional (1D) Al2O3 nanostructures were prepared by chemical vapor deposition of a single source precursor. Afterwards, recombinant filamentous bacteriophages which display a short binding motif with a cell adhesive peptide (RGD) on p3 and p8 proteins were immobilized on these 1D Al2O3 nanostructures by a simple dip-coating process to study the cellular response of human endothelial EA hy.926. While the cell density decreased on as-deposited 1D Al2O3 nanostructures, we observed enhanced cell proliferation and cell-cell interaction on recombinant phage overcoated 1D Al2O3 nanostructures. The recombinant phage overcoating also supports an isotropic cell spreading rather than elongated cell morphology as we observed on as-deposited Al2O3 1D nanostructures.