Search Results

Now showing 1 - 9 of 9
  • Item
    Exciton dispersion in para-quaterphenyl: Significant molecular interactions beyond Coulomb coupling
    (New York, NY : American Inst. of Physics, 2021) Graf, Lukas; Krupskaya, Yulia; Büchner, Bernd; Knupfer, Martin
    We have experimentally determined the momentum dependence of the electronic excitation spectra of para-quaterphenyl single crystals. The parallel arrangement of para-quaterphenyl molecules results in a strong Coulomb coupling of the molecular excitons. Such crystals have been considered to be a very good realization of the Frenkel exciton model, including the formation of H-type aggregates. Our data reveal an unexpected exciton dispersion of the upper Davydov component, which cannot be rationalized in terms of inter-molecular Coulomb coupling of the excitons. A significant reduction of the nearest neighbor coupling due to additional charge-transfer processes is able to provide an explanation of the data. Furthermore, the spectral onset of the excitation spectrum, which represents a heavy exciton resulting from exciton-phonon coupling, also shows a clear dispersion, which had been unknown so far. Finally, an optically forbidden excitation about 1 eV above the excitation onset is observed. © 2021 Author(s).
  • Item
    Growth of LiCoO2 Single Crystals by the TSFZ Method
    (Washington, DC : ACS Publ., 2018) Nakamura, Shigenobu; Maljuk, Andrey; Maruyama, Yuki; Nagao, Masanori; Watauchi, Satoshi; Hayashi, Takeshi; Anzai, Yutaka; Furukawa, Yasunori; Ling, Chris D.; Deng, Guochu; Avdeev, Maxim; Büchner, Bernd; Tanaka, Isao
    We have grown LiCoO2 single crystals by the traveling solvent floating zone (TSFZ) growth with Li-rich solvent, having observed the incongruent melting behavior of LiCoO2 between 1100 and 1300 °C. The optimum growth conditions in terms of atmosphere and solvent composition were determined to be Ar flow and an atomic ratio Li/Co 85:15, respectively. The crystals grown using a conventional-mirror-type furnace contained periodic inclusions of a Co-O phase due to the influence of Co-O phase segregation on the stability of the molten zone during growth. By using a tilted-mirror FZ furnace, inclusion-free LiCoO2 crystals of about 5 mm in diameter and 70 mm long were obtained at a tilting angle Î = 10°. The grown crystals were confirmed to be single-domain by neutron Laue diffraction. © 2018 American Chemical Society.
  • Item
    Wave-shaped polycyclic hydrocarbons with controlled aromaticity
    (Cambridge : RSC, 2019) Ma, Ji; Zhang, Ke; Schellhammer, Karl Sebastian; Fu, Yubin; Komber, Hartmut; Xu, Chi; Popov, Alexey A.; Hennersdorf, Felix; Weigand, Jan J.; Zhou, Shengqiang; Pisula, Wojciech; Ortmann, Frank; Berger, Reinhard; Liu, Junzhi; Feng, Xinliang
    Controlling the aromaticity and electronic properties of curved π-conjugated systems has been increasingly attractive for the development of novel functional materials for organic electronics. Herein, we demonstrate an efficient synthesis of two novel wave-shaped polycyclic hydrocarbons (PHs) 1 and 2 with 64 π-electrons. Among them, the wave-shaped π-conjugated carbon skeleton of 2 is unambiguously revealed by single-crystal X-ray crystallography analysis. The wave-shaped geometry is induced by steric congestion in the cove and fjord regions. Remarkably, the aromaticity of these two structural isomers can be tailored by the annulated direction of cyclopenta[b]fluorene units. Isomer 1 (Eoptg = 1.13 eV) behaves as a closed-shell compound with weakly antiaromatic feature, whereas its structural isomer 2 displays a highly stable tetraradical character (y0 = 0.23; y1 = 0.22; t1/2 = 91 days) with a narrow optical energy gap of 0.96 eV. Moreover, the curved PH 2 exhibits remarkable ambipolar charge transport in solution-processed organic thin-film transistors. Our research provides a new insight into the design and synthesis of stable functional curved aromatics with multiradical characters. © The Royal Society of Chemistry.
  • Item
    Stabilizing a three-center single-electron metal–metal bond in a fullerene cage
    (Cambridge : RSC, 2021) Jin, Fei; Xin, Jinpeng; Guan, Runnan; Xie, Xiao-Ming; Chen, Muqing; Zhang, Qianyan; Popov, Alexey A.; Xie, Su-Yuan; Yang, Shangfeng
    Trimetallic carbide clusterfullerenes (TCCFs) encapsulating a quinary M3C2 cluster represent a special family of endohedral fullerenes with an open-shell electronic configuration. Herein, a novel TCCF based on a medium-sized rare earth metal, dysprosium (Dy), is synthesized for the first time. The molecular structure of Dy3C2@Ih(7)-C80 determined by single crystal X-ray diffraction shows that the encapsulated Dy3C2 cluster adopts a bat ray configuration, in which the acetylide unit C2 is elevated above the Dy3 plane by ∼1.66 Å, while Dy–Dy distances are ∼3.4 Å. DFT computational analysis of the electronic structure reveals that the endohedral cluster has an unusual formal charge distribution of (Dy3)8+(C2)2−@C806− and features an unprecedented three-center single-electron Dy–Dy–Dy bond, which has never been reported for lanthanide compounds. Moreover, this electronic structure is different from that of the analogous Sc3C2@Ih(7)-C80 with a (Sc3)9+(C2)3−@C806− charge distribution and no metal–metal bonding.
  • Item
    Layered manganese bismuth tellurides with GeBi4Te7- and GeBi6Te10-type structures: Towards multifunctional materials
    (London : RSC Publ., 2019) Souchay, Daniel; Nentwig, Markus; Günther, Daniel; Keilholz, Simon; de Boor, Johannes; Zeugner, Alexander; Isaeva, Anna; Ruck, Michael; Wolter, Anja U.B.; Büchnerde, Bernd; Oeckler, Oliver
    The crystal structures of new layered manganese bismuth tellurides with the compositions Mn0.85(3)Bi4.10(2)Te7 and Mn0.73(4)Bi6.18(2)Te10 were determined by single-crystal X-ray diffraction, including the use of microfocused synchrotron radiation. These analyses reveal that the layered structures deviate from the idealized stoichiometry of the 12P-GeBi4Te7 (space group P3m1) and 51R-GeBi6Te10 (space group R3m) structure types they adopt. Modified compositions Mn1-xBi4+2x/3Te7 (x = 0.15-0.2) and Mn1-xBi6+2x/3Te10 (x = 0.19-0.26) assume cation vacancies and lead to homogenous bulk samples as confirmed by Rietveld refinements. Electron diffraction patterns exhibit no diffuse streaks that would indicate stacking disorder. The alternating quintuple-layer [M2Te3] and septuple-layer [M3Te4] slabs (M = mixed occupied by Bi and Mn) with 1 : 1 sequence (12P stacking) in Mn0.85Bi4.10Te7 and 2 : 1 sequence (51R stacking) in Mn0.81Bi6.13Te10 were also observed in HRTEM images. Temperature-dependent powder diffraction and differential scanning calorimetry show that the compounds are high-temperature phases, which are metastable at ambient temperature. Magnetization measurements are in accordance with a MnII oxidation state and point at predominantly ferromagnetic coupling in both compounds. The thermoelectric figures of merit of n-type conducting Mn0.85Bi4.10Te7 and Mn0.81Bi6.13Te10 reach zT = 0.25 at 375 °C and zT = 0.28 at 325 °C, respectively. Although the compounds are metastable, compact ingots exhibit still up to 80% of the main phases after thermoelectric measurements up to 400 °C. © The Royal Society of Chemistry 2019.
  • Item
    Mixed dysprosium-lanthanide nitride clusterfullerenes DyM2N@C80-: I h and Dy2MN@C80- i h (M = Gd, Er, Tm, and Lu): Synthesis, molecular structure, and quantum motion of the endohedral nitrogen atom
    (Cambridge : RSC Publ., 2019) Schlesier, C.; Liu, F.; Dubrovin, V.; Spree, L.; Büchner, B.; Avdoshenko, S.M.; Popov, A.A.
    Systematic exploration of the synthesis of mixed-metal Dy-M nitride clusterfullerenes (NCFs, M = Gd, Er, Tm, Lu) is performed, and the impact of the second metal on the relative yield is evaluated. We demonstrate that the ionic radius of the metal appears to be the main factor allowing explanation of the relative yields in Dy-M mixed-metal systems with M = Sc, Lu, Er, and Gd. At the same time, Dy-Tm NCFs show anomalously low yields, which is not consistent with the relatively small ionic radius of Tm3+ but can be explained by the high third ionization potential of Tm. Complete separation of Dy-Gd and Dy-Er, as well as partial separation of Dy-Lu M3N@C80 nitride clusterfullerenes, is accomplished by recycling HPLC. The molecular structures of DyGd2N@C80 and DyEr2N@C80 are analyzed by means of single-crystal X-ray diffraction. A remarkable ordering of mixed-metal nitride clusters is found despite similar size and electronic properties of the metals. Possible pyramidalization of the nitride clusters in these and other nitride clusterfullerenes is critically analyzed with the help of DFT calculations and reconstruction of the nitrogen inversion barrier in M3N@C80 molecules is performed. Although a double-well potential with a pyramidal cluster structure is found to be common for most of them, the small size of the inversion barrier often leads to an apparent planar structure of the cluster. This situation is found for those M3N@C80 molecules in which the energy of the lowest vibrational level exceeds that of the inversion barrier, including Dy3N@C80 and DyEr2N@C80. The genuine pyramidal structure can be observed by X-ray diffraction only when the lowest vibrational level is below the inversion barrier, such as those found in Gd3N@C80 and DyGd2N@C80. The quantum nature of molecular vibrations becomes especially apparent when the size of the inversion barrier is comparable to the energy of the lowest vibrational levels.
  • Item
    Mg3(Bi,Sb)2 single crystals towards high thermoelectric performance
    (Cambridge : RSC Publ., 2020) Pan, Yu; Yao, Mengyu; Hong, Xiaochen; Zhu, Yifan; Fan, Fengren; Imasato, Kazuki; He, Yangkun; Hess, Christian; Fink, Jörg; Yang, Jiong; Büchner, Bernd; Fu, Chenguang; Snyder, G. Jeffrey; Felser, Claudia
    The rapid growth of the thermoelectric cooler market makes the development of novel room temperature thermoelectric materials of great importance. Ternary n-type Mg3(Bi,Sb)2 alloys are promising alternatives to the state-of-the-art Bi2(Te,Se)3 alloys but grain boundary resistance is the most important limitation. n-type Mg3(Bi,Sb)2 single crystals with negligible grain boundaries are expected to have particularly high zT but have rarely been realized due to the demanding Mg-rich growth conditions required. Here, we report, for the first time, the thermoelectric properties of n-type Mg3(Bi,Sb)2 alloyed single crystals grown by a one-step Mg-flux method using sealed tantalum tubes. High weighted mobility ∼140 cm2 V−1 s−1 and a high zT of 0.82 at 315 K are achieved in Y-doped Mg3Bi1.25Sb0.75 single crystals. Through both experimental angle-resolved photoemission spectroscopy and theoretical calculations, we denote the origin of the high thermoelectric performance from a point of view of band widening effect and electronegativity, as well as the necessity to form high Bi/Sb ratio ternary Mg3(Bi,Sb)2 alloys. The present work paves the way for further development of Mg3(Bi,Sb)2 for near room temperature thermoelectric applications.
  • Item
    Direct Observation of Shock-Induced Disordering of Enstatite Below the Melting Temperature
    (Hoboken, NJ [u.a.] : Wiley, 2020) Hernandez, J.-A.; Morard, G.; Guarguaglini, M.; Alonso-Mori, R.; Benuzzi-Mounaix, A.; Bolis, R.; Fiquet, G.; Galtier, E.; Gleason, A.E.; Glenzer, S.; Guyot, F.; Ko, B.; Lee, H.J.; Mao, W.L.; Nagler, B.; Ozaki, N.; Schuster, A.K.; Shim, S.H.; Vinci, T.; Ravasio, A.
    We report in situ structural measurements of shock-compressed single crystal orthoenstatite up to 337 ± 55 GPa on the Hugoniot, obtained by coupling ultrafast X-ray diffraction to laser-driven shock compression. Shock compression induces a disordering of the crystalline structure evidenced by the appearance of a diffuse X-ray diffraction signal at nanosecond timescales at 80 ± 13 GPa on the Hugoniot, well below the equilibrium melting pressure (>170 GPa). The formation of bridgmanite and post-perovskite have been indirectly reported in microsecond-scale plate-impact experiments. Therefore, we interpret the high-pressure disordered state we observed at nanosecond scale as an intermediate structure from which bridgmanite and post-perovskite crystallize at longer timescales. This evidence of a disordered structure of MgSiO3 on the Hugoniot indicates that the degree of polymerization of silicates is a key parameter to constrain the actual thermodynamics of shocks in natural environments. © 2020. The Authors.
  • Item
    Investigating the magnetic and magnetocaloric behaviors of LiSm(PO3)4
    (London : RSC Publishing, 2023) Tran, T.A.; Petrov, Dimitar N.; Phan, T.L.; Tu, B. D.; Nhat, H.N.; Tran, H.C.; Weise, B.; Cwik, J.; Koshkid'ko, Yu S.; Manh, T.V.; Hoang, T.P.; Dang, N.T.
    We report a detailed study on the magnetic behaviors and magnetocaloric (MC) effect of a single crystal of lithium samarium tetraphosphate, LiSm(PO3)4. The analyses of temperature-dependent magnetization data have revealed magnetic ordering established with decreasing temperature below Tp, where Tp is the minimum of a dM/dT vs. T curve and varies as a linear function of the applied field H. The Curie temperature has been extrapolated from Tp(H) data, as H → 0, to be about 0.51 K. The establishment of magnetic-ordering causes a substantial change in the heat capacity Cp. Above Tp, the crystal exhibits paramagnetic behavior. Using the Curie-Weiss (CW) law and Arrott plots, we have found the crystal to have a CW temperature θCW ≈ −36 K, and short-range magnetic order associated with a coexistence of antiferromagnetic and ferromagnetic interactions ascribed to the couplings of magnetic dipoles and octupoles at the Γ7 and Γ8 states. An assessment of the MC effect has shown increases in value of the absolute magnetic-entropy change (|ΔSm|) and adiabatic-temperature change (ΔTad) when lowering the temperature to 2 K, and increasing the magnetic-field H magnitude. Around 2 K, the maximum value of |ΔSm| is about 3.6 J kg−1 K−1 for the field H = 50 kOe, and ΔTad is about 5.8 K for H = 20 kOe, with the relative cooling power (RCP) of ∼82.5 J kg−1. In spite of a low MC effect in comparison to Li(Gd,Tb,Ho)(PO3)4, the absence of magnetic hysteresis reflects that LiSm(PO3)4 is also a candidate for low-temperature MC applications below 25 K.