Search Results

Now showing 1 - 3 of 3
  • Item
    The Berlin principles on one health - Bridging global health and conservation
    (Amsterdam [u.a.] : Elsevier Science, 2020) Gruetzmacher, Kim; Karesh, William B.; Amuasi, John H.; Arshad, Adnan; Farlow, Andrew; Gabrysch, Sabine; Jetzkowitz, Jens; Lieberman, Susan; Palmer, Clare; Winkler, Andrea S.; Walzer, Chris
    For over 15-years, proponents of the One Health approach have worked to consistently interweave components that should never have been separated and now more than ever need to be re-connected: the health of humans, non-human animals, and ecosystems. We have failed to heed the warning signs. A One Health approach is paramount in directing our future health in this acutely and irrevocably changed world. COVID-19 has shown us the exorbitant cost of inaction. The time to act is now. © 2020
  • Item
    Respiratory tract deposition of inhaled roadside ultrafine refractory particles in a polluted megacity of South-East Asia
    (Amsterdam [u.a.] : Elsevier Science, 2019) Kecorius, Simonas; Madueño, Leizel; Löndahl, Jakob; Vallar, Edgar; Galvez, Maria Cecilia; Idolor, Luisito F.; Gonzaga-Cayetano, Mylene; Müller, Thomas; Birmili, Wolfram; Wiedensohler, Alfred
    Recent studies demonstrate that Black Carbon (BC) pollution in economically developing megacities remain higher than the values, which the World Health Organization considers to be safe. Despite the scientific evidence of the degrees of BC exposure, there is still a lack of understanding on how the severe levels of BC pollution affect human health in these regions. We consider information on the respiratory tract deposition dose (DD) of BC to be essential in understanding the link between personal exposure to air pollutants and corresponding health effects. In this work, we combine data on fine and ultrafine refractory particle number concentrations (BC proxy), and activity patterns to derive the respiratory tract deposited amounts of BC particles for the population of the highly polluted metropolitan area of Manila, Philippines. We calculated the total DD of refractory particles based on three metrics: refractory particle number, surface area, and mass concentrations. The calculated DD of total refractory particle number in Metro Manila was found to be 1.6 to 17 times higher than average values reported from Europe and the U.S. In the case of Manila, ultrafine particles smaller than 100 nm accounted for more than 90% of the total deposited refractory particle dose in terms of particle number. This work is a first attempt to quantitatively evaluate the DD of refractory particles and raise awareness in assessing pollution-related health effects in developing megacities. We demonstrate that the majority of the population may be highly affected by BC pollution, which is known to have negative health outcomes if no actions are taken to mitigate its emission. For the governments of such metropolitan areas, we suggest to revise currently existing environmental legislation, raise public awareness, and to establish supplementary monitoring of black carbon in parallel to already existing PM 10 and PM 2.5 measures. © 2019
  • Item
    Temperature-related excess mortality in German cities at 2 °C and higher degrees of global warming
    (San Diego, Calif. : Elsevier, 2020) Huber, Veronika; Krummenauer, Linda; Peña-Ortiz, Cristina; Lange, Stefan; Gasparrini, Antonio; Vicedo-Cabrera, Ana M.; Garcia-Herrera, Ricardo; Frieler, Katja
    Background: Investigating future changes in temperature-related mortality as a function of global mean temperature (GMT) rise allows for the evaluation of policy-relevant climate change targets. So far, only few studies have taken this approach, and, in particular, no such assessments exist for Germany, the most populated country of Europe. Methods: We assess temperature-related mortality in 12 major German cities based on daily time-series of all-cause mortality and daily mean temperatures in the period 1993–2015, using distributed-lag non-linear models in a two-stage design. Resulting risk functions are applied to estimate excess mortality in terms of GMT rise relative to pre-industrial levels, assuming no change in demographics or population vulnerability. Results: In the observational period, cold contributes stronger to temperature-related mortality than heat, with overall attributable fractions of 5.49% (95%CI: 3.82–7.19) and 0.81% (95%CI: 0.72–0.89), respectively. Future projections indicate that this pattern could be reversed under progressing global warming, with heat-related mortality starting to exceed cold-related mortality at 3 °C or higher GMT rise. Across cities, projected net increases in total temperature-related mortality were 0.45% (95%CI: −0.02–1.06) at 3 °C, 1.53% (95%CI: 0.96–2.06) at 4 °C, and 2.88% (95%CI: 1.60–4.10) at 5 °C, compared to today's warming level of 1 °C. By contrast, no significant difference was found between projected total temperature-related mortality at 2 °C versus 1 °C of GMT rise. Conclusions: Our results can inform current adaptation policies aimed at buffering the health risks from increased heat exposure under climate change. They also allow for the evaluation of global mitigation efforts in terms of local health benefits in some of Germany's most populated cities. © 2020 The Authors