Search Results

Now showing 1 - 4 of 4
  • Item
    The Effect of Boron Content on Wetting Kinetics in Si-B Alloy/h-BN System
    (New York, NY : Springer, 2019) Polkowski, Wojciech; Sobczak, Natalia; Bruzda, Grzegorz; Nowak, Rafał; Giuranno, Donatella; Kudyba, Artur; Polkowska, Adelajda; Pajor, Krzysztof; Kozieł, Tomasz; Kaban, Ivan
    In this work, the effect of boron content on the high-temperature wetting behavior in the Si-B alloy/h-BN systems was experimentally examined. For this reason, hypoeutectic, eutectic and hypereutectic Si-B alloys (Si-1B, Si-3.2B and Si-5.7B wt.%, respectively) were produced by electric arc melting method and then subjected to sessile drop/contact heating experiments with polycrystalline h-BN substrates, at temperatures up to 1750 °C. Similar to pure Si/h-BN system, wetting kinetics curves calculated on a basis of in situ recorded drop/substrate images point toward non-wetting behavior of all selected Si-B alloy/h-BN couples. The highest contact angle values of ~ 150° were obtained for hypoeutectic and eutectic Si-B alloys in the whole examined temperature range. © 2018, The Author(s).
  • Item
    High-Temperature Interaction of Liquid Gd with Y2O3
    (New York, NY : Springer, 2019) Turalska, P.; Sobczak, N.; Bruzda, G.; Kaban, I.; Mattern, N.
    The sessile drop method combined with contact heating procedure was applied for the investigation of high-temperature interaction between liquid Gd and Y2O3 substrate. Real-time behavior of Gd sample in flowing inert gas (Ar) atmosphere upon heating to and at temperature of 1362 °C was recorded using high-speed high-resolution CCD camera. The results evidenced that molten Gd wets Y2O3 substrate (the contact angle θ < 90°) immediately after melting of metal sample observed at T = 1324 °C (Tm = 1312 °C). During the first 3 min of the sessile drop test, the contact angle dropped from θ = 52° to θ = 24° and then stabilized at the final value of θf * = 33°. The solidified Gd/Y2O3 couple was subjected to structural characterization using optical microscopy, scanning electron microscopy coupled with x-ray energy-dispersive spectroscopy. The results evidenced that the wettability in the Gd/Y2O3 system has a reactive nature and the leading mechanism of the interaction between liquid Gd and Y2O3 is the dissolution of the ceramic in the liquid metal responsible for the formation of a deep crater in the substrate under the drop. Therefore, the final contact angle θf*, estimated from the side-view drop image, should be considered as an apparent value, compared to the more reliable value of θf = 70° measured on the cross section of the solidified couple. © 2019, The Author(s).
  • Item
    Catastrophic stress corrosion failure of Zr-base bulk metallic glass through hydrogen embrittlement
    (Amsterdam [u.a.] : Elsevier Science Amsterdam [u.a.] : Elsevier Science, 2019) Geissler, D.; Uhlemann, M.; Gebert, A.
    Zr-base bulk metallic glasses (BMG) are prone to pitting corrosion in halide containing solutions and also stress corrosion cracking (SCC) is often interpreted in this context. This work presents in situ SCC experiments on notched Zr52.5Cu17.9Ni14.6Al10Ti5 (at.%) BMG bars under 3-point bending in dilute NaCl solution. They show that pitting corrosion is only the initiating process. The pitted areas have a lower local corrosion potential and the reaction of Zr4+ to zirconyl ions in solution produces H+ that can be reduced and absorbed in the local acidic environment. So, hydrogen embrittlement causes the observed catastrophic failure and peculiar fracture surface characteristics. © 2019 The Authors
  • Item
    Transport and Electromechanical Properties of Ca3TaGa3Si2O14 Piezoelectric Crystals at Extreme Temperatures
    (Cham : Springer Nature Switzerland, 2019) Suhak, Yuriy; Johnson, Ward L.; Sotnikov, Andrei; Schmidt, Hagen; Fritze, Holger
    Transport mechanisms in structurally ordered piezoelectric Ca3TaGa3Si2O14 (CTGS) single crystals are studied in the temperature range of 1000-1300 °C by application of the isotope 18O as a tracer and subsequent analysis of diffusion profiles of this isotope using secondary ion mass spectrometry (SIMS). Determined oxygen self-diffusion coefficients enable calculation of oxygen ion contribution to the total conductivity, which is shown to be small. Since very low contributions of the cations have to be expected, the total conductivity must be dominated by electron transport. Ion and electron conductivities are governed by different mechanisms with activation energies (1.9±0.1) eV and (1.2±0.07) eV, respectively. Further, the electromechanical losses are studied as a function of temperature by means of impedance spectroscopy on samples with electrodes and a contactless tone-burst excitation technique. At temperatures above 650 °C the conductivity-related losses are dominant. Finally, the operation of CTGS resonators is demonstrated at cryogenic temperatures and materials piezoelectric strain constants are determined from 4.2 K to room temperature. Copyright © Materials Research Society 2019.