Search Results

Now showing 1 - 10 of 80
  • Item
    Diversity of methicillin-resistant coagulase-negative Staphylococcus spp. and methicillin-resistant Mammaliicoccus spp. isolated from ruminants and New World camelids
    (Amsterdam [u.a.] : Elsevier Science, 2021) Schauer, B.; Szostak, M.P.; Ehricht, R.; Monecke, S.; Feßler, A.T.; Schwarz, S.; Spergser, J.; Krametter-Frötscher, R.; Loncaric, I.
    Information about livestock carrying methicillin-resistant coagulase-negative staphylococci and mammaliicocci (MRCoNS/MRM) is scarce. The study was designed to gain knowledge of the prevalence, the phenotypic and genotypic antimicrobial resistance and the genetic diversity of MRCoNS/MRM originating from ruminants and New World camelids. In addition, a multi-locus sequence typing scheme for the characterization of Mammaliicoccus (formerly Staphylococcus) sciuri was developed. The study was conducted from April 2014 to January 2017 at the University Clinic for Ruminants and the Institute of Microbiology at the University of Veterinary Medicine Vienna. Seven hundred twenty-three nasal swabs originating from ruminants and New World camelids with and without clinical signs were examined. After isolation, MRCoNS/MRM were identified by MALDI-TOF, rpoB sequencing and typed by DNA microarray-based analysis and PCR. Antimicrobial susceptibility testing was conducted by agar disk diffusion. From all 723 nasal swabs, 189 MRCoNS/MRM were obtained. Members of the Mammaliicoccus (M.) sciuri group were predominant (M. sciuri (n = 130), followed by M. lentus (n = 43), M. fleurettii (n = 11)). In total, 158 out of 189 isolates showed phenotypically a multi-resistance profile. A seven-loci multi-locus sequence typing scheme for M. sciuri was developed. The scheme includes the analysis of internal segments of the house-keeping genes ack, aroE, ftsZ, glpK, gmk, pta1 and tpiA. In total, 28 different sequence types (STs) were identified among 92 selected M. sciuri isolates. ST1 was the most prevalent ST (n = 35), followed by ST 2 (n = 15), ST3 and ST5 (each n = 5), ST4 (n = 3), ST6, ST7, ST8, ST9, ST10 and ST11 (each n = 2).
  • Item
    Modelling the effect of feeding management on greenhouse gas and nitrogen emissions in cattle farming systems
    (Amsterdam [u.a.] : Elsevier Science, 2021) Ouatahar, Latifa; Bannink, André; Lanigan, Gary; Amon, Barbara
    Feed management decisions are an important element of managing greenhouse gas (GHG) and nitrogen (N) emissions in livestock farming systems. This review aims to a) discuss the impact of feed management practices on emissions in beef and dairy production systems and b) assess different modelling approaches used for quantifying the impact of these abatement measures at different stages of the feed and manure management chain. Statistical and empirical models are well-suited for practical applications when evaluating mitigation strategies, such as GHG calculator tools for farmers and for inventory purposes. Process-based simulation models are more likely to provide insights into the impact of biotic and abiotic drivers on GHG and N emissions. These models are based on equations which mathematically describe processes such as fermentation, aerobic and anaerobic respiration, denitrification, etc. and require a greater number of input parameters. Ultimately, the modelling approach used will be determined by a) the activity input data available, b) the temporal and spatial resolution required and c) the suite of emissions being studied. Simulation models are likely candidates to be able to better explain variation in on-farm GHG and N emissions, and predict with a higher accuracy for a specific mitigation measure under defined farming conditions, due to the fact that they better represent the underlying mechanisms causal for emissions. Integrated farm system models often make use of rather generic values or empirical models to quantify individual emissions sources, whereas combining a whole set of process-based models (or their results) that simulates the variation in GHG and N emissions and the associated whole farm budget has not been used. The latter represents a valuable approach to delineate underlying processes and their drivers within the system and to evaluate the integral effect on GHG emissions with different mitigation options.
  • Item
    Tribocorrosion behavior of β-type Ti-Nb-Ga alloys in a physiological solution
    (Amsterdam [u.a.] : Elsevier Science, 2023) Alberta, Ludovico Andrea; Vishnu, Jithin; Douest, Yohan; Perrin, Kevin; Trunfio-Sfarghiu, Ana-Maria; Courtois, Nicolas; Gebert, Annett; Ter-Ovanessian, Benoit; Calin, Mariana
    Tribo-electrochemical behavior in physiological solution of two β-type (100-x)(Ti-45Nb)-xGa (x = 4, 8 wt%) alloys, alongside β-Ti-45Nb and medical grade Ti-6Al-4V ELI, was investigated. Microstructure and mechanical behavior were evaluated by X-ray diffraction, microhardness and ultrasonic method. Tribocorrosion tests (open circuit potential, anodic potentiostatic tests) were performed using a reciprocating pin-on-disk tribometer under constant load. Degradation mechanisms are similar for the alloys: plastic deformation, delamination, abrasive and adhesive wear. Among the β-Ti-Nb alloys, an improved wear resistance with lower damage was remarked for β-92(Ti-45Nb)-8Ga alloy, attributed to increased microhardness. Content of Ga3+ ions released in the test solutions were found to be in very low amounts (few ppb). Addition of Ga to Ti-45Nb resulted in improved corrosion resistance under mechanical loading.
  • Item
    Enzymatic degradation of polyethylene terephthalate nanoplastics analyzed in real time by isothermal titration calorimetry
    (Amsterdam [u.a.] : Elsevier Science, 2021) Vogel, Kristina; Wei, Ren; Pfaff, Lara; Breite, Daniel; Al-Fathi, Hassan; Ortmann, Christian; Estrela-Lopis, Irina; Venus, Tom; Schulze, Agnes; Harms, Hauke; Bornscheuer, Uwe T.; Maskow, Thomas
    Plastics are globally used for a variety of benefits. As a consequence of poor recycling or reuse, improperly disposed plastic waste accumulates in terrestrial and aquatic ecosystems to a considerable extent. Large plastic waste items become fragmented to small particles through mechanical and (photo)chemical processes. Particles with sizes ranging from millimeter (microplastics, <5 mm) to nanometer (nanoplastics, NP, <100 nm) are apparently persistent and have adverse effects on ecosystems and human health. Current research therefore focuses on whether and to what extent microorganisms or enzymes can degrade these NP. In this study, we addressed the question of what information isothermal titration calorimetry, which tracks the heat of reaction of the chain scission of a polyester, can provide about the kinetics and completeness of the degradation process. The majority of the heat represents the cleavage energy of the ester bonds in polymer backbones providing real-time kinetic information. Calorimetry operates even in complex matrices. Using the example of the cutinase-catalyzed degradation of polyethylene terephthalate (PET) nanoparticles, we found that calorimetry (isothermal titration calorimetry-ITC) in combination with thermokinetic models is excellently suited for an in-depth analysis of the degradation processes of NP. For instance, we can separately quantify i) the enthalpy of surface adsorption ∆AdsH = 129 ± 2 kJ mol−1, ii) the enthalpy of the cleavage of the ester bonds ∆EBH = −58 ± 1.9 kJ mol−1 and the apparent equilibrium constant of the enzyme substrate complex K = 0.046 ± 0.015 g L−1. It could be determined that the heat production of PET NP degradation depends to 95% on the reaction heat and only to 5% on the adsorption heat. The fact that the percentage of cleaved ester bonds (η = 12.9 ± 2.4%) is quantifiable with the new method is of particular practical importance. The new method promises a quantification of enzymatic and microbial adsorption to NP and their degradation in mimicked real-world aquatic conditions.
  • Item
    The Berlin principles on one health - Bridging global health and conservation
    (Amsterdam [u.a.] : Elsevier Science, 2020) Gruetzmacher, Kim; Karesh, William B.; Amuasi, John H.; Arshad, Adnan; Farlow, Andrew; Gabrysch, Sabine; Jetzkowitz, Jens; Lieberman, Susan; Palmer, Clare; Winkler, Andrea S.; Walzer, Chris
    For over 15-years, proponents of the One Health approach have worked to consistently interweave components that should never have been separated and now more than ever need to be re-connected: the health of humans, non-human animals, and ecosystems. We have failed to heed the warning signs. A One Health approach is paramount in directing our future health in this acutely and irrevocably changed world. COVID-19 has shown us the exorbitant cost of inaction. The time to act is now. © 2020
  • Item
    An AI-based open recommender system for personalized labor market driven education
    (Amsterdam [u.a.] : Elsevier Science, 2022) Tavakoli, Mohammadreza; Faraji, Abdolali; Vrolijk, Jarno; Molavi, Mohammadreza; Mol, Stefan T.; Kismihók, Gábor
    Attaining those skills that match labor market demand is getting increasingly complicated, not in the last place in engineering education, as prerequisite knowledge, skills, and abilities are evolving dynamically through an uncontrollable and seemingly unpredictable process. Anticipating and addressing such dynamism is a fundamental challenge to twenty-first century education. The burgeoning availability of data, not only on the demand side but also on the supply side (in the form of open educational resources) coupled with smart technologies, may provide a fertile ground for addressing this challenge. In this paper, we propose a novel, Artificial Intelligence (AI) driven approach to the development of an open, personalized, and labor market oriented learning recommender system, called eDoer. We discuss the complete system development cycle starting with a systematic user requirements gathering, and followed by system design, implementation, and validation. Our recommender prototype (1) derives the skill requirements for particular occupations through an analysis of online job vacancy announcements
  • Item
    Monitoring the thermally induced transition from sp3-hybridized into sp2-hybridized carbons
    (Amsterdam [u.a.] : Elsevier Science, 2021) Schüpfer, Dominique B.; Badaczewski, Felix; Peilstöcker, Jan; Guerra-Castro, Juan Manuel; Shim, Hwirim; Firoozabadi, Saleh; Beyer, Andreas; Volz, Kerstin; Presser, Volker; Heiliger, Christian; Smarsly, Bernd; Klar, Peter J.
    The preparation of carbons for technical applications is typically based on a treatment of a precursor, which is transformed into the carbon phase with the desired structural properties. During such treatment the material passes through several different structural stages, for example, starting from precursor molecules via an amorphous phase into crystalline-like phases. While the structure of non-graphitic and graphitic carbon has been well studied, the transformation stages from molecular to amorphous and non-graphitic carbon are still not fully understood. Disordered carbon often contains a mixture of sp3-, sp2-and sp1-hybridized bonds, whose analysis is difficult to interpret. We systematically address this issue by studying the transformation of purely sp3-hybridized carbons, that is, nanodiamond and adamantane, into sp2-hybridized non-graphitic and graphitic carbon. The precursor materials are thermally treated at different temperatures and the transformation stages are monitored. We employ Raman spectroscopy, WAXS and TEM to characterize the structural changes. We correlate the intensities and positions of the Raman bands with the lateral crystallite size La estimated by WAXS analysis. The behavior of the D and G Raman bands characteristic for sp2-type material formed by transforming the sp3-hybridized precursors into non-graphitic and graphitic carbon agrees well with that observed using sp2-structured precursors.
  • Item
    Effect of pore geometry on ultra-densified hydrogen in microporous carbons
    (Amsterdam [u.a.] : Elsevier Science, 2021) Tian, Mi; Lennox, Matthew J.; O’Malley, Alexander J.; Porter, Alexander J.; Krüner, Benjamin; Rudić, Svemir; Mays, Timothy J.; Düren, Tina; Presser, Volker; Terry, Lui R.; Rols, Stephane; Fang, Yanan; Dong, Zhili; Rochat, Sebastien; Ting, Valeska P.
    Our investigations into molecular hydrogen (H2) confined in microporous carbons with different pore geometries at 77 K have provided detailed information on effects of pore shape on densification of confined H2 at pressures up to 15 MPa. We selected three materials: a disordered, phenolic resin-based activated carbon, a graphitic carbon with slit-shaped pores (titanium carbide-derived carbon), and single-walled carbon nanotubes, all with comparable pore sizes of <1 nm. We show via a combination of in situ inelastic neutron scattering studies, high-pressure H2 adsorption measurements, and molecular modelling that both slit-shaped and cylindrical pores with a diameter of ∼0.7 nm lead to significant H2 densification compared to bulk hydrogen under the same conditions, with only subtle differences in hydrogen packing (and hence density) due to geometric constraints. While pore geometry may play some part in influencing the diffusion kinetics and packing arrangement of hydrogen molecules in pores, pore size remains the critical factor determining hydrogen storage capacities. This confirmation of the effects of pore geometry and pore size on the confinement of molecules is essential in understanding and guiding the development and scale-up of porous adsorbents that are tailored for maximising H2 storage capacities, in particular for sustainable energy applications.
  • Item
    Resolving mobility anisotropy in quasi-free-standing epitaxial graphene by terahertz optical Hall effect
    (Amsterdam [u.a.] : Elsevier Science, 2021) Armakavicius, Nerijus; Kühne, Philipp; Eriksson, Jens; Bouhafs, Chamseddine; Stanishev, Vallery; Ivanov, Ivan G.; Yakimova, Rositsa; Zakharov, Alexei A.; Al-Temimy, Ameer; Coletti, Camilla; Schubert, Mathias; Darakchieva, Vanya
    In this work, we demonstrate the application of terahertz-optical Hall effect (THz-OHE) to determine directionally dependent free charge carrier properties of ambient-doped monolayer and quasi-free-standing-bilayer epitaxial graphene on 4H–SiC(0001). Directionally independent free hole mobility parameters are found for the monolayer graphene. In contrast, anisotropic hole mobility parameters with a lower mobility in direction perpendicular to the SiC surface steps and higher along the steps in quasi-free-standing-bilayer graphene are determined for the first time. A combination of THz-OHE, nanoscale microscopy and optical spectroscopy techniques are used to investigate the origin of the anisotropy. Different defect densities and different number of graphene layers on the step edges and terraces are ruled out as possible causes. Scattering mechanisms related to doping variations at the step edges and terraces as a result of different interaction with the substrate and environment are discussed and also excluded. It is suggested that the step edges introduce intrinsic scattering in quasi-free-standing-bilayer graphene, that is manifested as a result of the higher ratio between mean free path and average terrace width parameters. The suggested scenario allows to reconcile existing differences in the literature regarding the anisotropic electrical transport in epitaxial graphene. © 2020 Elsevier Ltd
  • Item
    From microfluidics to hierarchical hydrogel materials
    (Amsterdam [u.a.] : Elsevier Science, 2023) Weigel, Niclas; Li, Yue; Fery, Andreas; Thiele, Julian
    Over the past two decades, microfluidics has made significant contributions to material and life sciences, particularly via the design of nano-, micro- and mesoscale materials such as nanoparticles, micelles, vesicles, emulsion droplets, and microgels. Unmatched in control over a multitude of material parameters, microfluidics has also shed light on fundamental aspects of material design such as the early stages of nucleation and growth processes as well as structure evolution. Exemplarily, polymer hydrogel particles can be formed via microfluidics with exact control over size, shape, functionalization, compartmentalization, and mechanics that is hardly found in any other processing method. Interestingly, the utilization of microfluidics for material design largely focuses on the fabrication of single entities that act as reaction volume for organic and cell-free biosynthesis, cell mimics, or local environment for cell culturing. In recent years, however, hydrogel design has shifted towards structures that integrate a large variety of functions, e.g., to address the demands for sensing tasks in a complex environment or more closely mimicking architecture and organization of tissue by multiparametric cultures. Hence, this review provides an overview of recent literature that explores microfluidics for fabricating hydrogel materials that go well beyond common length scales as well as the structural and functional complexity of microgels necessary to produce hierarchical hydrogel structures. We focus on examples that utilize microfluidics to design microgel-based assemblies, on microfluidically made polymer microgels for 3D bioprinting, on hydrogels fabricated by microfluidics in a continuous fashion, like fibers, and on hydrogel structures that are shaped by microchannels.