Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Modulation Linearity Characterization of Si Ring Modulators

2021, Jo, Youngkwan, Mai, Christian, Lischke, Stefan, Zimmermann, Lars, Choi, Woo-Young

Modulation linearity of Si ring modulators (RMs) is investigated through the numerical simulation based on the coupled-mode theory and experimental verification. Numerical values of the key parameters needed for the simulation are experimentally extracted. Simulation and measurement results agree well. With these, the influence of input optical wavelength and power on the Si RM linearity are characterized.

Loading...
Thumbnail Image
Item

Millimeter-Wave and Terahertz Transceivers in SiGe BiCMOS Technologies

2021, Kissinger, Dietmar, Kahmen, Gerhard, Weigel, Robert

This invited paper reviews the progress of silicon–germanium (SiGe) bipolar-complementary metal–oxide–semiconductor (BiCMOS) technology-based integrated circuits (ICs) during the last two decades. Focus is set on various transceiver (TRX) realizations in the millimeter-wave range from 60 GHz and at terahertz (THz) frequencies above 300 GHz. This article discusses the development of SiGe technologies and ICs with the latter focusing on the commercially most important applications of radar and beyond 5G wireless communications. A variety of examples ranging from 77-GHz automotive radar to THz sensing as well as the beginnings of 60-GHz wireless communication up to THz chipsets for 100-Gb/s data transmission are recapitulated. This article closes with an outlook on emerging fields of research for future advancement of SiGe TRX performance.

Loading...
Thumbnail Image
Item

Editors' Choice - Precipitation of Suboxides in Silicon, their Role in Gettering of Copper Impurities and Carrier Recombination

2020, Kissinger, G., Kot, D., Huber, A., Kretschmer, R., Müller, T., Sattler, A.

This paper describes a theoretical investigation of the phase composition of oxide precipitates and the corresponding emission of self-interstitials at the minimum of the free energy and their evolution with increasing number of oxygen atoms in the precipitates. The results can explain the compositional evolution of oxide precipitates and the role of self-interstitials therein. The formation of suboxides at the edges of SiO2 precipitates after reaching a critical size can explain several phenomena like gettering of Cu by segregation to the suboxide region and lifetime reduction by recombination of minority carriers in the suboxide. It provides an alternative explanation, based on minimized free energy, to the theory of strained and unstrained plates. A second emphasis was payed to the evolution of the morphology of oxide precipitates. Based on the comparison with results from scanning transmission electron microscopy the sequence of morphology evolution of oxide precipitates was deduced. It turned out that it is opposite to the sequence assumed until now. © 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.