Search Results

Now showing 1 - 10 of 148
  • Item
    Strong-Field Ionization of Linear Molecules by a Bichromatic Elliptically Polarized Laser Field with Coplanar Counterrotating or Corotating Components of Different Frequencies
    (Bristol : IOP Publ., 2020) Gazibegović-Busuladžić, A.; Busuladžić, M.; Čerkić, A.; Hasović, E.; Becker, W.; Milošević, D.B.
    We investigate strong-field ionization of linear molecules by a two-color laser field of frequencies rω and sω having coplanar counterrotating or corotating elliptically polarized components (ω is the fundamental laser field frequency and r and s are integers). Using the improved molecular strong-field approximation we analyze direct above-threshold ionization (ATI) and high-order ATI (HATI) spectra. More precisely, reflection and rotational symmetries of these spectra for linear molecules aligned in the laser-field polarization plane are considered. The reflection symmetries for particular molecular orientations, known to be valid for a bicircular field (this is the field with circularly polarized counterrotating components), are valid also for arbitrary component ellipticities. However, specific rotational symmetries that are satisfied for HATI by a bicircular field, are violated for an arbitrary elliptically polarized field with counterrotating components. For the corotating case and the N2 molecule we analyze molecular-orientation-dependent interferences and plateau structures for various ellipticities.
  • Item
    Elastic properties of single crystal Bi12SiO20 as a function of pressure and temperature and acoustic attenuation effects in Bi12 MO20 (M = Si, Ge and Ti)
    (Bristol : IOP Publ., 2020) Haussühl, Eiken; Reichmann, Hans Josef; Schreuer, Jürgen; Friedrich, Alexandra; Hirschle, Christian; Bayarjargal, Lkhamsuren; Winkler, Björn; Alencar, Igor; Wiehl, Leonore; Ganschow, Steffen
    A comprehensive study of sillenite Bi12SiO20 single-crystal properties, including elastic stiffness and piezoelectric coefficients, dielectric permittivity, thermal expansion and molar heat capacity, is presented. Brillouin-interferometry measurements (up to 27 GPa), which were performed at high pressures for the first time, and ab initio calculations based on density functional theory (up to 50 GPa) show the stability of the sillenite structure in the investigated pressure range, in agreement with previous studies. Elastic stiffness coefficients c 11 and c 12 are found to increase continuously with pressure while c 44 increases slightly for lower pressures and remains nearly constant above 15 GPa. Heat-capacity measurements were performed with a quasi-adiabatic calorimeter employing the relaxation method between 2 K and 395 K. No phase transition could be observed in this temperature interval. Standard molar entropy, enthalpy change and Debye temperature are extracted from the data. The results are found to be roughly half of the previous values reported in the literature. The discrepancy is attributed to the overestimation of the Debye temperature which was extracted from high-temperature data. Additionally, Debye temperatures obtained from mean sound velocities derived by Voigt-Reuss averaging are in agreement with our heat-capacity results. Finally, a complete set of electromechanical coefficients was deduced from the application of resonant ultrasound spectroscopy between 103 K and 733 K. No discontinuities in the temperature dependence of the coefficients are observed. High-temperature (up to 1100 K) resonant ultrasound spectra recorded for Bi12 MO20 crystals revealed strong and reversible acoustic dissipation effects at 870 K, 960 K and 550 K for M = Si, Ge and Ti, respectively. Resonances with small contributions from the elastic shear stiffness c 44 and the piezoelectric stress coefficient e 123 are almost unaffected by this dissipation. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    Charged domains in ferroelectric, polycrystalline yttrium manganite thin films resolved with scanning electron microscopy
    (Bristol : IOP Publ., 2020) Rayapati, Venkata Rao; Bürger, Danilo; Du, Nan; Kowol, Cornelia; Blaschke, Daniel; Stöcker, Hartmut; Matthes, Patrick; Patra, Rajkumar; Skorupa, Ilona; Schulz, Stefan E.; Schmidt, Heidemarie
    We have investigated ferroelectric charged domains in polycrystalline hexagonal yttrium manganite thin films (Y1Mn1O3, Y0.95Mn1.05O3, Y1Mn0.99Ti0.01O3, and Y0.94Mn1.05Ti0.01O3) by scanning electron microscopy (SEM) in secondary electron emission mode with a small acceleration voltage. Using SEM at an acceleration voltage of 1.0 kV otherwise homogenous surface charging effects are reduced, polarization charges can be observed and polarization directions (±Pz) of the ferroelectric domains in the polycrystalline thin films can be identified. Thin films of different chemical composition have been deposited by pulsed laser deposition on Pt/SiO2/Si structures under otherwise same growth conditions. Using SEM it has been shown that different charged domain density networks are existing in polycrystalline yttrium manganite thin films. © 2020 IOP Publishing Ltd.
  • Item
    Correlations between the structure and superconducting properties of MT-YBaCuO
    (Bristol : IOP Publ., 2020) Prikhna, T.A.; Moshchill, V.E.; Rabier, J.; Chaud, X.; Joulain, A.; Pan, A.V.; Litskendorf, D.; Habisreuther, T.
    Comprehensive experimental results of fully oxidized (up to YBa2Cu3O6,9-7) melt-Textured YBaCuO materials with different microstructures are presented. These microstructures are built respectively: (1) with a high dislocations density but almost without twins (after high temperature treatment at 2 GPa) and (2) with a high twin density, but practically free from dislocations and stacking faults (after high temperature oxygenation at 10-16 MPa). It is shown that for attaining high critical current densities and fields of irreversibility (jc(H-c, 0 T)=9•104 A/cm2, H irr=9.7 T at 77 K), a high twin density in YBa2Cu3O6.9-7 matrix of MT-YBCO is required. The density of twins in fully oxidized materials depends on the distances between Y2BaCuO5 inclusions, larger twin densities are related to shorter distances between inclusions. The influence of phase composition of the initial powder mixtures on the distances between Y2BaCuO5 inclusions have been characterized and discussed. © Published under licence by IOP Publishing Ltd.
  • Item
    Mode competition in broad-ridge-waveguide lasers
    (Bristol : IOP Publ., 2020) Koester, J.-P.; Putz, A.; Wenzel, H.; Wünsche, H.-J.; Radziunas, M.; Stephan, H.; Wilkens, M.; Zeghuzi, A.; Knigge, A.
    The lateral brightness achievable with high-power GaAs-based laser diodes having long and broad waveguides is commonly regarded to be limited by the onset of higher-order lateral modes. For the study of the lateral-mode competition two complementary simulation tools are applied, representing different classes of approximations. The first tool bases on a completely incoherent superposition of mode intensities and disregards longitudinal effects like spatial hole burning, whereas the second tool relies on a simplified carrier transport and current flow. Both tools yield agreeing power-current characteristics that fit the data measured for 5-23 µm wide ridges. Also, a similarly good qualitative conformance of the near and far fields is found. However, the threshold of individual modes, the partition of power between them at a given current, and details of the near and far fields show differences. These differences are the consequence of a high sensitivity of the mode competition to details of the models and of the device structure. Nevertheless, it can be concluded concordantly that the brightness rises with increasing ridge width irrespective of the onset of more and more lateral modes. The lateral brightness W mm-1at 10 MW cm-2 power density on the front facet of the investigated laser with widest ridge (23 µm) is comparable with best values known from much wider broad-area lasers. In addition, we show that one of the simulation tools is able to predict beam steering and coherent beam coupling without introducing any phenomenological coupling coefficient or asymmetries. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    Foundations of plasmas for medical applications
    (Bristol : IOP Publ., 2022) von Woedtke, T.; Laroussi, M.; Gherardi, M.
    Plasma medicine refers to the application of nonequilibrium plasmas at approximately body temperature, for therapeutic purposes. Nonequilibrium plasmas are weakly ionized gases which contain charged and neutral species and electric fields, and emit radiation, particularly in the visible and ultraviolet range. Medically-relevant cold atmospheric pressure plasma (CAP) sources and devices are usually dielectric barrier discharges and nonequilibrium atmospheric pressure plasma jets. Plasma diagnostic methods and modelling approaches are used to characterize the densities and fluxes of active plasma species and their interaction with surrounding matter. In addition to the direct application of plasma onto living tissue, the treatment of liquids like water or physiological saline by a CAP source is performed in order to study specific biological activities. A basic understanding of the interaction between plasma and liquids and bio-interfaces is essential to follow biological plasma effects. Charged species, metastable species, and other atomic and molecular reactive species first produced in the main plasma ignition are transported to the discharge afterglow to finally be exposed to the biological targets. Contact with these liquid-dominated bio-interfaces generates other secondary reactive oxygen and nitrogen species (ROS, RNS). Both ROS and RNS possess strong oxidative properties and can trigger redox-related signalling pathways in cells and tissue, leading to various impacts of therapeutic relevance. Dependent on the intensity of plasma exposure, redox balance in cells can be influenced in a way that oxidative eustress leads to stimulation of cellular processes or oxidative distress leads to cell death. Currently, clinical CAP application is realized mainly in wound healing. The use of plasma in cancer treatment (i.e. plasma oncology) is a currently emerging field of research. Future perspectives and challenges in plasma medicine are mainly directed towards the control and optimization of CAP devices, to broaden and establish its medical applications, and to open up new plasma-based therapies in medicine.
  • Item
    Micro Fresnel mirror array with individual mirror control
    (Bristol : IOP Publ., 2020) Poyyathuruthy Bruno, Binal; Schütze, Robert; Grunwald, Ruediger; Wallrabe, Ulrike
    We present the design and fabrication of a miniaturized array of piezoelectrically actuated high speed Fresnel mirrors with individual mirror control. These Fresnel mirrors can be used to generate propagation invariant and self-healing interference patterns. The mirrors are actuated using piezobimorph actuators, and the consequent change of the tilting angle of the mirrors changes the fringe spacing of the interference pattern generated. The array consists of four Fresnel mirrors each having an area of 2 × 2 mm2 arranged in a 2x2 configuration. The device, optimized using FEM simulations, is able to achieve maximum mirror deflections of 15 mrad, and has a resonance frequency of 28 kHz.
  • Item
    High-mobility 4 μm MOVPE-grown (100) β-Ga2O3 film by parasitic particles suppression
    (Bristol : IOP Publ., 2023) Chou, Ta-Shun; Seyidov, Palvan; Bin Anooz, Saud; Grüneberg, Raimund; Rehm, Jana; Tran, Thi Thuy Vi; Fiedler, Andreas; Tetzner, Kornelius; Galazka, Zbigniew; Albrecht, Martin; Popp, Andreas
    In this work, we comprehensively investigate the development of unwanted parasitic particles in the MOVPE chamber while growing μm level films. The density of the parasitic particles is found to be pronounced at film thicknesses starting from >1.5 to 2 μm. These particles seem to induce structural defects such as twin lamellae, thereby harming the electrical properties of the grown film. The origin of the parasitic particle is attributed to the parasitic reactions within the chamber triggered by the promoted gas-phase reactions during the growth process, which can be largely reduced by increasing the total gas flow and decreasing the showerhead distance to the susceptor. A film thickness of up to 4 μm has been achieved after minimizing the density of parasitic particles. Thereby, RT Hall measurements reveal carrier mobilities of 160 cm2V−1s−1 at carrier concentrations of 5.7 × 1016cm−3
  • Item
    Direct observation and simultaneous use of linear and quadratic electro-optical effects
    (Bristol : IOP Publ., 2020) Steglich, Patrick; Mai, Christian; Villringer, Claus; Mai, Andreas
    We report on the direct observation and simultaneous use of the linear and quadratic electro-optical effect and propose a method by which higher-order susceptibilities of electro-optical materials can be determined. The evaluation is based on the separation of the second- and third-order susceptibilities and the experimental technique uses a slot waveguide ring resonator fabricated in integrated photonic circuit technology, which is embedded by a guest-host polymer system consisting of the azobenzene dye Disperse Red 1 in a poly(methyl methacrylate) matrix as an active electro-optical material. The contribution of both effects on the electro-optical response under the influence of static and time-varying electrical fields is investigated. We show that the quadratic electro-optical effect has a significant influence on the overall electro-optical response even with acentric molecular orientated molecules. Our findings have important implications for developing electro-optical devices based on polymer-filled slot waveguides and give rise to advanced photonic circuits. © 2020 IOP Publishing Ltd.
  • Item
    Terahertz quantum-cascade lasers for high-resolution absorption spectroscopy of atoms and ions in plasmas
    (Bristol : IOP Publ., 2023) Lü, X.; Röben, B.; Biermann, K.; Wubs, J.R.; Macherius, U.; Weltmann, K.-D.; van Helden, J.H.; Schrottke, L.; Grahn, H.T.
    We report on terahertz (THz) quantum-cascade lasers (QCLs) based on GaAs/AlAs heterostructures, which exhibit single-mode emission at 3.360, 3.921, and 4.745 THz. These frequencies are in close correspondence to fine-structure transitions of Al atoms, N+ ions, and O atoms, respectively. Due to the low electrical pump power of these THz QCLs, they can be operated in a mechanical cryocooler in continuous-wave mode, while a sufficient intrinsic tuning range of more than 5 GHz is maintained. The single-mode operation and the intrinsic tuning range of these THz QCLs allow for the application of these lasers as radiation sources for high-resolution absorption spectroscopy to determine the absolute densities of Al atoms, N+ ions, and O atoms in plasmas.