Search Results

Now showing 1 - 9 of 9
  • Item
    Additive Manufacturing of Binary Ni–Ti Shape Memory Alloys Using Electron Beam Powder Bed Fusion: Functional Reversibility Through Minor Alloy Modification and Carbide Formation
    ([Cham] : Springer International Publishing, 2022) Krooß, P.; Lauhoff, C.; Gustmann, T.; Gemming, T.; Sobrero, C.; Ewald, F.; Brenne, F.; Arold, T.; Nematolahi, M.; Elahinia, M.; Thielsch, J.; Hufenbach, J.; Niendorf, T.
    Shape memory alloys (SMAs), such as Ni–Ti, are promising candidates for actuation and damping applications. Although processing of Ni–Ti bulk materials is challenging, well-established processing routes (i.e. casting, forging, wire drawing, laser cutting) enabled application in several niche applications, e.g. in the medical sector. Additive manufacturing, also referred to as 4D-printing in this case, is known to be highly interesting for the fabrication of SMAs in order to produce near-net-shaped actuators and dampers. The present study investigated the impact of electron beam powder bed fusion (PBF-EB/M) on the functional properties of C-rich Ni50.9Ti49.1 alloy. The results revealed a significant loss of Ni during PBF-EB/M processing. Process microstructure property relationships are discussed in view of the applied master alloy and powder processing route, i.e. vacuum induction-melting inert gas atomization (VIGA). Relatively high amounts of TiC, being already present in the master alloy and powder feedstock, are finely dispersed in the matrix upon PBF-EB/M. This leads to a local change in the chemical composition (depletion of Ti) and a pronounced shift of the transformation temperatures. Despite the high TiC content, superelastic testing revealed a good shape recovery and, thus, a negligible degradation in both, the as-built and the heat-treated state.
  • Item
    In situ detection of cracks during laser powder bed fusion using acoustic emission monitoring
    (Amsterdam : Elsevier, 2022) Seleznev, Mikhail; Gustmann, Tobias; Friebel, Judith Miriam; Peuker, Urs Alexander; Kühn, Uta; Hufenbach, Julia Kristin; Biermann, Horst; Weidner, Anja
    Despite rapid development of laser powder bed fusion (L-PBF) and its monitoring techniques, there is still a lack of in situ crack detection methods, among which acoustic emission (AE) is one of the most sensitive. To elaborate on this topic, in situ AE monitoring was applied to L-PBF manufacturing of a high-strength Al92Mn6Ce2 (at. %) alloy and combined with subsequent X-ray computed tomography. By using a structure borne high-frequency sensor, even a simple threshold-based monitoring was able to detect AE activity associated with cracking, which occurred not only during L-PBF itself, but also after the build job was completed, i.e. in the cooling phase. AE data analysis revealed that crack-related signals can easily be separated from the background noise (e.g. inert gas circulation pump) through their specific shape of a waveform, as well as their energy, skewness and kurtosis. Thus, AE was verified to be a promising method for L-PBF monitoring, enabling to detect formation of cracks regardless of their spatial and temporal occurrence.
  • Item
    Experimental and numerical characterization of imperfect additively manufactured lattices based on triply periodic minimal surfaces
    (Amsterdam [u.a.] : Elsevier Science, 2023) Günther, Fabian; Pilz, Stefan; Hirsch, Franz; Wagner, Markus; Kästner, Markus; Gebert, Annett; Zimmermann, Martina
    Lattices based on triply periodic minimal surfaces (TPMS) are attracting increasing interest in seminal industries such as bone tissue engineering due to their excellent structure-property relationships. However, the potential can only be exploited if their structural integrity is ensured. This requires a fundamental understanding of the impact of imperfections that arise during additive manufacturing. Therefore, in the present study, the structure-property relationships of eight TPMS lattices, including their imperfections, are investigated experimentally and numerically. In particular, the focus is on biomimetic network TPMS lattices of the type Schoen I-WP and Gyroid, which are fabricated by laser powder bed fusion from the biocompatible alloy Ti-42Nb. The experimental studies include computed tomography measurements and compression tests. The results highlight the importance of process-related imperfections on the mechanical performance of TPMS lattices. In the numerical work, firstly the as-built morphology is artificially reconstructed before finite element analyses are performed. Here, the reconstruction procedure previously developed by the same authors is used and validated on a larger experimental matrix before more advanced calculations are conducted. Specifically, the reconstruction reduces the numerical overestimation of stiffness from up to 341% to a maximum of 26% and that of yield strength from 66% to 12%. Given a high simulation accuracy and flexibility, the presented procedure can become a key factor in the future design process of TPMS lattices.
  • Item
    Machine learning for additive manufacturing: Predicting materials characteristics and their uncertainty
    (Amsterdam [u.a.] : Elsevier Science, 2023) Chernyavsky, Dmitry; Kononenko, Denys Y.; Han, Jun Hee; Kim, Hwi Jun; van den Brink, Jeroen; Kosiba, Konrad
    Additive manufacturing (AM) is known for versatile fabrication of complex parts, while also allowing the synthesis of materials with desired microstructures and resulting properties. These benefits come at a cost: process control to manufacture parts within given specifications is very challenging due to the relevance of a large number of processing parameters. Efficient predictive machine learning (ML) models trained on small datasets, can minimize this cost. They also allow to assess the quality of the dataset inclusive of uncertainty. This is important in order for additively manufactured parts to meet property specifications not only on average, but also within a given variance or uncertainty. Here, we demonstrate this strategy by developing a heteroscedastic Gaussian process (HGP) model, from a dataset based on laser powder bed fusion of a glass-forming alloy at varying processing parameters. Using amorphicity as the microstructural descriptor, we train the model on our Zr52.5Cu17.9Ni14.6Al10Ti5 (at.%) alloy dataset. The HGP model not only accurately predicts the mean value of amorphicity, but also provides the respective uncertainty. The quantification of the aleatoric and epistemic uncertainty contributions allows to assess intrinsic inaccuracies of the dataset, as well as identify underlying physical phenomena. This HGP model approach enables to systematically improve ML-driven AM processes.
  • Item
    Laser powder bed fusion of a superelastic Cu-Al-Mn shape memory alloy
    (Amsterdam [u.a.] : Elsevier Science, 2021) Babacan, N.; Pauly, S.; Gustmann, T.
    Dense and crack-free specimens of the shape memory alloy Cu71.6Al17Mn11.4 (at.%) were produced via laser powder bed fusion across a wide range of process parameters. The microstructure, viz. grain size, can be directly tailored within the process and with it the transformation temperatures (TTs) shifted to higher values by raising the energy input. The microstructure, and the superelastic behavior of additively manufactured samples were assessed by a detailed comparison with induction melted material. The precipitation of the α phase, which inhibit the martensitic transformation, were not observed in the additively manufactured samples owing to the high intrinsic cooling rates during the fabrication process. Fine columnar grains with a strong [001]-texture along the building direction lead to an enhanced yield strength compared to the coarse-grained cast samples. A maximum recoverable strain of 2.86% was observed after 5% compressive loading. The first results of our approach imply that laser powder bed fusion is a promising technique to directly produce individually designed Cu-Al-Mn shape memory parts with a pronounced superelasticity at room temperature.
  • Item
    Temperature-dependent dynamic compressive properties and failure mechanisms of the additively manufactured CoCrFeMnNi high entropy alloy
    (Oxford : Elsevier Science, 2022) Chen, Hongyu; Liu, Yang; Wang, Yonggang; Li, Zhiguo; Wang, Di; Kosiba, Konrad
    CoCrFeMnNi high entropy alloy (HEA) parts were fabricated by laser powder bed fusion (LPBF), and their dynamic compressive properties at different temperatures as well as the resulting microstructures were analyzed. The HEAs showed an unprecedented strength-ductility combination, especially at a cryogenic temperature of 77 K and a high strain rate of 3000 s−1. Under this testing condition, the yield strength (YS) of the HEAs amounted to 665 MPa. Regardless of the testing temperature, the deformation mechanism of all investigated HEAs was dominated by a synergistic effect consisting of deformation twinning and dislocation pile-up around twins. The fraction of twin boundaries and dislocation density within the deformed microstructure of the HEA correlated with the test temperature. At 77 K, the formation of nanotwins together with dislocation slip prevailed and contributed to pronounced twin-twin and twin-dislocation interactions which effectively restricted the dislocation movement and, hence, contributed to a higher YS as well as strain hardening rate in comparison to that of the HEAs at room temperature of 298 K. The LPBF-fabricated HEAs showed unpronounced thermal softening even at a high testing temperature of 1073 K. Continuous dynamic recrystallization was restricted in the HEA because of its inherent sluggish dislocation kinetics and low stacking fault energy.
  • Item
    Additively manufactured AlSi10Mg lattices – Potential and limits of modelling as-designed structures
    (Amsterdam [u.a.] : Elsevier Science, 2022) Gebhardt, Ulrike; Gustmann, Tobias; Giebeler, Lars; Hirsch, Franz; Hufenbach, Julia Kristin; Kästner, Markus
    Additive manufacturing overcomes the restrictions of classical manufacturing methods and enables the production of near-net-shaped, complex geometries. In that context, lattice structures are of high interest due to their superior weight reduction potential. AlSi10Mg is a well-known alloy for additive manufacturing and well suited for such applications due to its high strength to material density ratio. It has been selected in this study for producing bulk material and complex geometries of a strut-based lattice type (rhombic dodecahedron). A detailed characterisation of as-built and heat-treated specimens has been conducted including microstructural analyses, identification of imperfections and rigorous mechanical testing under different load conditions. An isotropic elastic–plastic material model is deduced on the basis of tension test results of bulk material test specimens. Performed experiments under compression, shear, torsion and tension load are compared to their virtual equivalents. With the help of numerical modelling, the overall structural behaviour was simulated using the detailed lattice geometry and was successfully predicted by the presented numerical models. The discussion of the limits of this approach aims to evaluate the potential of the numerical assessment in the modelling of the properties for novel lightweight structures.
  • Item
    Structure-property relationships of imperfect additively manufactured lattices based on triply periodic minimal surfaces
    (Amsterdam [u.a.] : Elsevier Science, 2022) Günther, Fabian; Hirsch, Franz; Pilz, Stefan; Wagner, Markus; Gebert, Annett; Kästner, Markus; Zimmermann, Martina
    Lattices based on triply periodic minimal surfaces (TPMS) have recently attracted increasing interest, but their additive manufacturing (AM) is fraught with imperfections that compromise their structural integrity. Initial research has addressed the influence of process-induced imperfections in lattices, but so far numerical work for TPMS lattices is insufficient. Therefore, in the present study, the structure–property relationships of TPMS lattices, including their imperfections, are investigated experimentally and numerically. The main focus is on a biomimetic Schoen I-WP network lattice made of laser powder bed fusion (LPBF) processed Ti-42Nb designed for bone tissue engineering (BTE). The lattice is scanned by computed tomography (CT) and its as-built morphology is examined before a modeling procedure for artificial reconstruction is developed. The structure–property relationships are analyzed by experimental and numerical compression tests. An anisotropic elastoplastic material model is parameterized for finite element analyses (FEA). The numerical results indicates that the reconstruction of the as-built morphology decisively improves the prediction accuracy compared to the ideal design. This work highlights the central importance of process-related imperfections for the structure–property relationships of TPMS lattices and proposes a modeling procedure to capture their implications.
  • Item
    Effect of scanning strategy on microstructure and mechanical properties of a biocompatible Ti–35Nb–7Zr–5Ta alloy processed by laser-powder bed fusion
    (Berlin : Springer, 2022) Batalha, Weverson Capute; Batalha, Rodolfo Lisboa; Kosiba, Konrad; Kiminami, Claudio Shyinti; Gargarella, Piter
    The influence of scanning strategy (SS) on microstructure and mechanical properties of a Ti–35Nb–7Zr–5Ta alloy processed by laser-powder bed fusion (L-PBF) is investigated for the first time. Three SSs are considered: unidirectional-Y; bi-directional with 79° rotation (R79); and chessboard (CHB). The SSs affect the type and distribution of pores. The highest relative densities and more homogeneous distribution of pores are obtained with R79 and CHB scanning strategies, whereas aligned pores are formed in the unidirectional-Y. The SSs show direct influence on the crystallographic texture with unidirectional-Y strategy showing fiber texture. The R79 strategy results in a weak texture and the CHB scanning strategy forms a randomly oriented heterogeneous grain structure. The lowest Young modulus is obtained with the unidirectional-Y strategy, whereas the R79 strategy results in the highest yield strength. It is shown that the SSs may be used for tuning the microstructure of a beta-Ti alloy in L-PBF.