Search Results

Now showing 1 - 4 of 4
  • Item
    Autofluorescence guided welding of heart tissue by laser pulse bursts at 1550 nm
    (Washington, DC : Optica, 2020) Litvinova, Karina; Chernysheva, Maria; Stegemann, Berthold; Leyva, Francisco
    Wound healing and other surgical technologies traditionally solved by suturing and stapling have recently been enhanced by the application of laser tissue welding. The usage of high energy laser radiation to anastomose tissues eliminates a foreign body reaction, reduces scar formation, and allows for the creation of watertight closure. In the current work, we show that an ultrafast pulsed fibre laser beam with 183 µJ·cm−2 energy fluence at 1550 nm provides successful welding of dissected chicken heart walls with the tensile strength of 1.03±0.12 kg·cm−2 equal to that of native tissue. The welding process was monitored employing fluorescence spectroscopy that detects the biochemical composition of tissues. We believe that fluorescence spectroscopy guided laser tissue welding is a promising approach for decreasing wound healing times and the avoiding risks of postoperative complications.
  • Item
    Super-resolution RESOLFT microscopy of lipid bilayers using a fluorophore-switch dyad
    (Cambridge : RSC, 2020) Frawley, Andrew T.; Wycisk, Virginia; Xiong, Yaoyao; Galiani, Silvia; Sezgin, Erdinc; Urbančič, Iztok; Vargas Jentzsch, Andreas; Leslie, Kathryn G.; Eggeling, Christian; Anderson, Harry L.
    Dyads consisting of a photochromic switch covalently linked to a fluorescent dye allow the emission from the dye to be controlled by reversible photoisomerization of the switch; one form of the switch quenches fluorescence by accepting energy from the dye. Here we investigate the use of dyads of this type for super-resolution imaging of lipid bilayers. Giant unilamellar vesicles stained with the dyads were imaged with about a two-fold resolution-enhancement compared with conventional confocal microscopy. This was achieved by exciting the fluorophore at 594 nm, using a switch activated by violet and red light (405/640 nm). This journal is © The Royal Society of Chemistry.
  • Item
    Direct supercritical angle localization microscopy for nanometer 3D superresolution
    ([London] : Nature Publishing Group UK, 2021) Dasgupta, Anindita; Deschamps, Joran; Matti, Ulf; Hübner, Uwe; Becker, Jan; Strauss, Sebastian; Jungmann, Ralf; Heintzmann, Rainer; Ries, Jonas
    3D single molecule localization microscopy (SMLM) is an emerging superresolution method for structural cell biology, as it allows probing precise positions of proteins in cellular structures. In supercritical angle localization microscopy (SALM), z-positions of single fluorophores are extracted from the intensity of supercritical angle fluorescence, which strongly depends on their distance to the coverslip. Here, we realize the full potential of SALM and improve its z-resolution by more than four-fold compared to the state-of-the-art by directly splitting supercritical and undercritical emission, using an ultra-high NA objective, and applying fitting routines to extract precise intensities of single emitters. We demonstrate nanometer isotropic localization precision on DNA origami structures, and on clathrin coated vesicles and microtubules in cells, illustrating the potential of SALM for cell biology.
  • Item
    On-chip fluorescence detection using photonic bandgap guiding optofluidic hollow-core light cage
    (Melville, NY : AIP Publishing, 2022) Kim, Jisoo; Jang, Bumjoon; Wieduwilt, Torsten; Warren-Smith, Stephen C.; Bürger, Johannes; Maier, Stefan A.; Schmidt, Markus A.
    The on-chip detection of fluorescent light is essential for many bioanalytical and life-science related applications. Here, the optofluidic light cage consisting of a sparse array of micrometer encircling a hollow core represents an innovative concept, particularly for on-chip waveguide-based spectroscopy. In the present work, we demonstrate the potential of the optofluidic light cage concept in the context of integrated on-chip fluorescence spectroscopy. Specifically, we show that fluorescent light from a dye-doped aqueous solution generated in the core of a nanoprinted dual-ring light cage can be efficiently captured and guided to the waveguide ports. Notably, the fluorescence collection occurs predominantly in the fundamental mode, a property that distinguishes it from evanescent field-based waveguide detection schemes that favor collection in higher-order modes. Through exploiting the flexibility of waveguide design and 3D nanoprinting, both excitation and emission have been localized in the high transmission domains of the fundamental core mode. Fast diffusion, detection limits comparable to bulk measurements, and the potential of this approach in terms of device integration were demonstrated. Together with previous results on absorption spectroscopy, the achievements presented here suggest that the optofluidic light cage concept defines a novel photonic platform for integrated on-chip spectroscopic devices and real-time sensors compatible with both the fiber circuitry and microfluidics. Applications in areas such as bioanalytics and environmental sciences are conceivable, while more sophisticated applications such as nanoparticle tracking analysis and integrated Raman spectroscopy could be envisioned,