Search Results

Now showing 1 - 10 of 25
  • Item
    Structural and mechanical characterization of heterogeneities in a CuZr-based bulk metallic glass processed by high pressure torsion
    (Amsterdam [u.a.] : Elsevier Science, 2018) Ebner, Christian; Escher, Benjamin; Gammer, Christoph; Eckert, Jürgen; Pauly, Simon; Rentenberger, Christian
    Cu45Zr45Al5Ag5 bulk metallic glass samples, processed by high pressure torsion (HPT) under various conditions, were characterized using synchrotron X-ray diffraction, nanoindentation, differential scanning calorimetry, atomic force and transmission electron microscopy. The experimental results clearly show that HPT modifies the amorphous structure by increasing the mean atomic volume. The level of rejuvenation, correlated with the excess mean atomic volume, is enhanced at higher shear strains as inferred from relaxation enthalpies. By mapping of structural and mechanical quantities, the strain-induced rejuvenated state is characterized on cross-sectional HPT samples on a local scale. A clear correlation both between elastic and plastic softening and between softening and excess mean atomic volume is obtained. But also the heterogeneity of the HPT induced rejuvenation is revealed, resulting in the formation of highly strain-softened regions next to less-deformed ones. A hardness drop of up to 20% is associated with an estimated increase of the mean atomic volume of up to 0.75%. Based on synchrotron X-ray diffraction and nanoindentation measurements it is concluded that elastic fluctuations are enhanced in the rejuvenated material on different length scales down to atomic scale. Furthermore, the calculated flexibility volume and the corresponding average mean square atomic displacement is increased. The plastic response during nanoindentation indicates that HPT processing promotes a more homogeneous-like deformation.
  • Item
    Tunable Circular Dichroism by Photoluminescent Moiré Gratings
    (Weinheim : Wiley-VCH, 2020) Aftenieva, Olha; Schnepf, Max; Mehlhorn, Börge; König, Tobias A.F.
    In nanophotonics, there is a current demand for ultrathin, flexible nanostructures that are simultaneously easily tunable, demonstrate a high contrast, and have a strong response in photoluminescent polarization. In this work, the template-assisted self-assembly of water-dispersed colloidal core–shell quantum dots into 1D light-emitting sub-micrometer gratings on a flexible substrate is demonstrated. Combining such structures with a light-absorbing metallic counterpart by simple stacking at various angles results in a tunable Moiré pattern with strong lateral contrast. Furthermore, a combination with an identical emitter-based grating leads to a chiroptical effect with a remarkably high degree of polarization of 0.72. Such a structure demonstrates direct circular polarized photoluminescence, for the first time, without a need for an additional chiral template as an intermediary. The suggested approach allows for reproducible, large-area manufacturing at reasonable costs and is of potential use for chiroptical sensors, photonic circuit applications, or preventing counterfeit. © 2020 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
  • Item
    Photoluminescence Mapping over Laser Pulse Fluence and Repetition Rate as a Fingerprint of Charge and Defect Dynamics in Perovskites
    (Weinheim : Wiley-VCH, 2023) Rao, Shraddha M.; Kiligaridis, Alexander; Yangui, Aymen; An, Qingzhi; Vaynzof, Yana; Scheblykin, Ivan G.
    Defects in metal halide perovskites (MHP) are photosensitive, making the observer effect unavoidable when laser spectroscopy methods are applied. Photoluminescence (PL) bleaching and enhancement under light soaking and recovery in dark are examples of the transient phenomena that are consequent to the creation and healing of defects. Depending on the initial sample composition, environment, and other factors, the defect nature and evolution can strongly vary, making spectroscopic data analysis prone to misinterpretations. Herein, the use of an automatically acquired dependence of PL quantum yield (PLQY) on the laser pulse repetition rate and pulse fluence as a unique fingerprint of both charge carrier dynamics and defect evolution is demonstrated. A simple visual comparison of such fingerprints allows for assessment of similarities and differences between MHP samples. The study illustrates this by examining methylammonium lead triiodide (MAPbI3) films with altered stoichiometry that just after preparation showed very pronounced defect dynamics at time scale from milliseconds to seconds, clearly distorting the PLQY fingerprint. Upon weeks of storage, the sample fingerprints evolve toward the standard stoichiometric MAPbI3 in terms of both charge carrier dynamics and defect stability. Automatic PLQY mapping can be used as a universal method for assessment of perovskite sample quality.
  • Item
    Tailoring Plasmonics of Au@Ag Nanoparticles by Silica Encapsulation
    (Weinheim : Wiley-VCH, 2021) Schultz, Johannes; Kirner, Felizitas; Potapov, Pavel; Büchner, Bernd; Lubk, Axel; Sturm, Elena V.
    Hybrid metallic nanoparticles (NPs) encapsulated in oxide shells are currently intensely studied for plasmonic applications in sensing, medicine, catalysis, and photovoltaics. Here, a method for the synthesis of Au@Ag@SiO2 cubes with a uniform silica shell of variable and adjustable thickness in the nanometer range is introduced and their excellent, highly reproducible, and tunable optical response is demonstrated. Varying the silica shell thickness, the excitation energies of the single NP plasmon modes can be tuned in a broad spectral range between 2.55 and 3.25 eV. Most importantly, a strong coherent coupling of the surface plasmons is revealed at the silver–silica interface with Mie resonances at the silica–vacuum interface leading to a significant field enhancement at the encapsulated NP surface in the range of 100% at shell thicknesses t ≃ 20 nm. Consequently, the synthesis method and the field enhancement open pathways to a widespread use of silver NPs in plasmonic applications including photonic crystals and may be transferred to other non-precious metals. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
  • Item
    Fabrication of four-level hierarchical topographies through the combination of LIPSS and direct laser interference pattering on near-beta titanium alloy
    (New York, NY [u.a.] : Elsevier, 2022) Schell, Frederic; Alamri, Sabri; Hariharan, Avinash; Gebert, Annett; Lasagni, Andrés Fabián; Kunze, Tim
    Complex repetitive periodic surface patterns were produced on a near-beta Ti-13Nb-13Zr alloy, using two-beam Direct Laser Interference Patterning (DLIP) employing a picosecond-pulsed laser source with wavelengths of 355 nm, 532 nm and 1064 nm. Different types of Laser-induced periodic surface structures (LIPSS) are produced, including low and high spatial frequency LIPSS, which are observed frequently on top of the line-like DLIP microstructures, as well as quasi-periodic microstructures with periods greater than the laser wavelength. The feature size of the fabricated LIPSS features could be tuned as function of the utilized laser process parameters.
  • Item
    Short range order and topology of binary Ge-S glasses
    (Lausanne : Elsevier, 2022) Pethes, I.; Jóvári, P.; Michalik, S.; Wagner, T.; Prokop, V.; Kaban, I.; Száraz, D.; Hannon, A.; Krbal, M.
    Short range order and topology of GexS100-x glasses over a broad composition range (20 ≤ x ≤ 42 in at%) was investigated by neutron diffraction, X-ray diffraction, and Ge K-edge extended X-ray absorption fine structure (EXAFS) measurements. The experimental data sets were fitted simultaneously in the framework of the reverse Monte Carlo simulation method. It was found that both constituents (Ge and S) satisfy the Mott-rule in all investigated glasses: Ge and S atoms have 4 and 2 neighbours, respectively. The structure of these glasses can be described with the chemically ordered network model: Ge-S bonds are preferred; S-S bonds are present only in S-rich glasses. Dedicated simulations showed that Ge-Ge bonds are necessary in Ge-rich glasses. Connections between Ge atoms (such as edge-sharing GeS4/2 tetrahedra) in stoichiometric and S-rich glasses were analysed. The frequency of primitive rings was also calculated.
  • Item
    Wetting behaviour and reactivity between liquid Gd and ZrO2 substrate
    (Bor : Techn. Faculty, Univ. of Belgrade, 2017) Turalska, P.; Homa, M.; Bruzda, G.; Sobczak, N.; Kaban, I.; Mattern, N.; Eckert, J.
    The wetting behavior and reactivity between molten pure Gd and polycrystalline 3YSZ substrate (ZrO2 stabilized with 3 wt% of Y2O3)were experimentally determined by a sessile drop method using a classical contact heating coupled with drop pushing procedure. The test was performed under an inert flowing gas atmosphere (Ar) at two temperatures of 1362°C and 1412°C. Immediately after melting (Tm=1341°C), liquid Gd did not wet the substrate forming a contact angle of θ=141°. The non-wetting to wetting transition (θ < 90°) took place after about 110 seconds of interaction and was accompanied by a sudden decrease in the contact angle value to 67°. Further heating of the couple to 1412 °C did not affect wetting (θ=67°±1°). The solidified Gd/3YSZ couple was studied by means of optical microscopy and scanning electron microscopy coupled with X-ray energy dispersive spectroscopy. Structural investigations revealed that the wettability in the Gd/3YSZ system is of a reactive nature associated with the formation of a continuous layer of a wettable reaction product Gd2Zr2O7.
  • Item
    Study of TiAl thin films on piezoelectric CTGS substrates as an alternative metallization system for high-temperature SAW devices
    (Rio de Janeiro : Elsevier, 2021) Seifert, Marietta; Lattner, Eric; Menzel, Siegfried B.; Oswald, Steffen; Gemming, Thomas
    Ti/Al multilayer films with a total thickness of 200 nm were deposited on the high-temperature (HT) stable piezoelectric Ca3TaGa3Si2O14 (CTGS) as well as on thermally oxidized Si (SiO2/Si) reference substrates. The Ti–Al films were characterized regarding their suitability as an alternative metallization for electrodes in HT surface acoustic wave devices. These films provide the advantage of significantly lower costs and in addition also a significantly lower density as compared to Pt, which allows a greater flexibility in device design. To realize a thermal stability of the films, AlNO cover as well as barrier layers at the interface to the substrate were applied. The samples were annealed for 10 h at up to 800 °C in high vacuum (HV) and at 600 °C in air and analyzed regarding the γ-TiAl phase formation, film morphology, and possible degradation. The Ti/Al films were prepared either by magnetron sputtering or by e-beam evaporation and the different behavior arising from the different deposition method was analyzed and discussed. For the evaporated Ti/Al films, AlNO barriers with a lower O content were used to evaluate the influence of the composition of the AlNO on the HT stability. The sputter-deposited Ti/Al films showed an improved γ-TiAl phase formation and HT stability (on SiO2/Si up to 800 °C in HV and 600 °C in air, on CTGS with a slight oxidation after annealing at 800 °C in HV) as compared to the evaporated samples, which were only stable up to 600 °C in HV and in air.
  • Item
    The Effect of Boron Content on Wetting Kinetics in Si-B Alloy/h-BN System
    (New York, NY : Springer, 2019) Polkowski, Wojciech; Sobczak, Natalia; Bruzda, Grzegorz; Nowak, Rafał; Giuranno, Donatella; Kudyba, Artur; Polkowska, Adelajda; Pajor, Krzysztof; Kozieł, Tomasz; Kaban, Ivan
    In this work, the effect of boron content on the high-temperature wetting behavior in the Si-B alloy/h-BN systems was experimentally examined. For this reason, hypoeutectic, eutectic and hypereutectic Si-B alloys (Si-1B, Si-3.2B and Si-5.7B wt.%, respectively) were produced by electric arc melting method and then subjected to sessile drop/contact heating experiments with polycrystalline h-BN substrates, at temperatures up to 1750 Â°C. Similar to pure Si/h-BN system, wetting kinetics curves calculated on a basis of in situ recorded drop/substrate images point toward non-wetting behavior of all selected Si-B alloy/h-BN couples. The highest contact angle values of ~ 150° were obtained for hypoeutectic and eutectic Si-B alloys in the whole examined temperature range. © 2018, The Author(s).
  • Item
    High-Temperature Interaction of Liquid Gd with Y2O3
    (New York, NY : Springer, 2019) Turalska, P.; Sobczak, N.; Bruzda, G.; Kaban, I.; Mattern, N.
    The sessile drop method combined with contact heating procedure was applied for the investigation of high-temperature interaction between liquid Gd and Y2O3 substrate. Real-time behavior of Gd sample in flowing inert gas (Ar) atmosphere upon heating to and at temperature of 1362 Â°C was recorded using high-speed high-resolution CCD camera. The results evidenced that molten Gd wets Y2O3 substrate (the contact angle θ < 90°) immediately after melting of metal sample observed at T = 1324 Â°C (Tm = 1312 Â°C). During the first 3 min of the sessile drop test, the contact angle dropped from θ = 52° to θ = 24° and then stabilized at the final value of θf * = 33°. The solidified Gd/Y2O3 couple was subjected to structural characterization using optical microscopy, scanning electron microscopy coupled with x-ray energy-dispersive spectroscopy. The results evidenced that the wettability in the Gd/Y2O3 system has a reactive nature and the leading mechanism of the interaction between liquid Gd and Y2O3 is the dissolution of the ceramic in the liquid metal responsible for the formation of a deep crater in the substrate under the drop. Therefore, the final contact angle θf*, estimated from the side-view drop image, should be considered as an apparent value, compared to the more reliable value of θf = 70° measured on the cross section of the solidified couple. © 2019, The Author(s).