Search Results

Now showing 1 - 10 of 43
  • Item
    Auger- and X-ray Photoelectron Spectroscopy at Metallic Li Material: Chemical Shifts Related to Sample Preparation, Gas Atmosphere, and Ion and Electron Beam Effects
    (Basel : MDPI, 2022) Oswald, Steffen
    Li-based batteries are a key element in reaching a sustainable energy economy in the near future. The understanding of the very complex electrochemical processes is necessary for the optimization of their performance. X-ray photoelectron spectroscopy (XPS) is an accepted method used to improve understanding around the chemical processes at the electrode surfaces. Nevertheless, its application is limited because the surfaces under investigation are mostly rough and inhomogeneous. Local elemental analysis, such as Auger electron spectroscopy (AES), could assist XPS to gain more insight into the chemical processes at the surfaces. In this paper, some challenges in using electron spectroscopy are discussed, such as binding energy (BE) referencing for the quantitative study of chemical shifts, gas atmospheric influences, or beam damage (including both AE and XP spectroscopy). Carefully prepared and surface-modified metallic lithium material is used as model surface, considering that Li is the key element for most battery applications.
  • Item
    Influence of Polyvinylpyrrolidone on Thermoelectric Properties of Melt-Mixed Polymer/Carbon Nanotube Composites
    (Basel : MDPI, 2023) Krause, Beate; Imhoff, Sarah; Voit, Brigitte; Pötschke, Petra
    For thermoelectric applications, both p- and n-type semi-conductive materials are combined. In melt-mixed composites based on thermoplastic polymers and carbon nanotubes, usually the p-type with a positive Seebeck coefficient (S) is present. One way to produce composites with a negative Seebeck coefficient is to add further additives. In the present study, for the first time, the combination of single-walled carbon nanotubes (SWCNTs) with polyvinylpyrrolidone (PVP) in melt-mixed composites is investigated. Polycarbonate (PC), poly(butylene terephthalate) (PBT), and poly(ether ether ketone) (PEEK) filled with SWCNTs and PVP were melt-mixed in small scales and thermoelectric properties of compression moulded plates were studied. It could be shown that a switch in the S-value from positive to negative values was only possible for PC composites. The addition of 5 wt% PVP shifted the S-value from 37.8 µV/K to −31.5 µV/K (2 wt% SWCNT). For PBT as a matrix, a decrease in the Seebeck coefficient from 59.4 µV/K to 8.0 µV/K (8 wt% PVP, 2 wt% SWCNT) could be found. In PEEK-based composites, the S-value increased slightly with the PVP content from 48.0 µV/K up to 54.3 µV/K (3 wt% PVP, 1 wt% SWCNT). In addition, the long-term stability of the composites was studied. Unfortunately, the achieved properties were not stable over a storage time of 6 or 18 months. Thus, in summary, PVP is not suitable for producing long-term stable, melt-mixed n-type SWCNT composites.
  • Item
    Phase Formation, Microstructure and Mechanical Properties of Mg67Ag33 as Potential Biomaterial
    (Basel : MDPI, 2021) Kosiba, Konrad; Prashanth, Konda Gokuldoss; Scudino, Sergio
    The phase and microstructure formation as well as mechanical properties of the rapidly solidified Mg67Ag33 (at. %) alloy were investigated. Owing to kinetic constraints effective during rapid cooling, the formation of equilibrium phases is suppressed. Instead, the microstructure is mainly composed of oversaturated hexagonal closest packed Mg-based dendrites surrounded by a mixture of phases, as probed by X-ray diffraction, electron microscopy and energy dispersive X-ray spectroscopy. A possible non-equilibrium phase diagram is suggested. Mainly because of the fine-grained dendritic and interdendritic microstructure, the material shows appreciable mechanical properties, such as a compressive yield strength and Young’s modulus of 245 ± 5 MPa and 63 ± 2 GPa, respectively. Due to this low Young’s modulus, the Mg67Ag33 alloy has potential for usage as biomaterial and challenges ahead, such as biomechanical compatibility, biodegradability and antibacterial properties are outlined.
  • Item
    Efficiency of Magnetostatic Protection Using Nanostructured Permalloy Shielding Coatings Depending on Their Microstructure
    (Basel : MDPI, 2021) Zubar, T.; Grabchikov, S.; Kotelnikova, A.; Kaniukov, E.; Kutuzau, M.; Leistner, K.; Nielsch, K.; Vershinina, T.; Tishkevich, D.; Kanafyev, O.; Kozlovskiy, A.; Zdorovets, M.; Fedosyuk, V.; Trukhanov, A.
    The effect of microstructure on the efficiency of shielding or shunting of the magnetic fluxby permalloy shields was investigated in the present work. For this purpose, the FeNi shieldingcoatings with different grain structures were obtained using stationary and pulsed electrodeposition.The coatings’ composition, crystal structure, surface microstructure, magnetic domain structure, andshielding efficiency were studied. It has been shown that coatings with 0.2–0.6μm grains have adisordered domain structure. Consequently, a higher value of the shielding efficiency was achieved,but the working range was too limited. The reason for this is probably the hindered movement of thedomain boundaries. Samples with nanosized grains have an ordered two-domain magnetic structurewith a permissible partial transition to a superparamagnetic state in regions with a grain size of lessthan 100 nm. The ordered magnetic structure, the small size of the domain, and the coexistenceof ferromagnetic and superparamagnetic regions, although they reduce the maximum value ofthe shielding efficiency, significantly expand the working range in the nanostructured permalloyshielding coatings. As a result, a dependence between the grain and domain structure and theefficiency of magnetostatic shielding was found.
  • Item
    Synthesis of Bulk Zr48Cu36Al8Ag8 Metallic Glass by Hot Pressing of Amorphous Powders
    (Basel : MDPI, 2021) He, Tianbing; Ciftci, Nevaf; Uhlenwinkel, Volker; Scudino, Sergio
    The critical cooling rate necessary for glass formation via melt solidification poses inherent constraints on sample size using conventional casting techniques. This drawback can be overcome by pressure-assisted sintering of metallic glass powders at temperatures above the glass transition, where the material shows viscous-flow behavior. Partial crystallization during sintering usually exacerbates the inherent brittleness of metallic glasses and thus needs to be avoided. In order to achieve high density of the bulk specimens while avoiding (or minimizing) crystallization, the optimal combination between low viscosity and long incubation time for crystallization must be identified. Here, by carefully selecting the time–temperature window for powder consolidation, we synthesized highly dense Zr48Cu36Ag8Al8 bulk metallic glass (BMG) with mechanical properties comparable with its cast counterpart. The larger ZrCu-based BMG specimens fabricated in this work could then be post-processed by flash-annealing, offering the possibility to fabricate monolithic metallic glasses and glass–matrix composites with enhanced room-temperature plastic deformation.
  • Item
    Artificial Intelligence for the Prediction of the Thermal Performance of Evaporative Cooling Systems
    (Basel : MDPI, 2021) Asfahan, Hafiz M.; Sajjad, Uzair; Sultan, Muhammad; Hussain, Imtiyaz; Hamid, Khalid; Ali, Mubasher; Wang, Chi-Chuan; Shamshiri, Redmond R.; Khan, Muhammad Usman
    The present study reports the development of a deep learning artificial intelligence (AI) model for predicting the thermal performance of evaporative cooling systems, which are widely used for thermal comfort in different applications. The existing, conventional methods for the analysis of evaporation-assisted cooling systems rely on experimental, mathematical, and empirical approaches in order to determine their thermal performance, which limits their applications in diverse and ambient spatiotemporal conditions. The objective of this research was to predict the thermal performance of three evaporation-assisted air-conditioning systems—direct, indirect, and Maisotsenko evaporative cooling systems—by using an AI approach. For this purpose, a deep learning algorithm was developed and lumped hyperparameters were initially chosen. A correlation analysis was performed prior to the development of the AI model in order to identify the input features that could be the most influential for the prediction efficiency. The deep learning algorithm was then optimized to increase the learning rate and predictive accuracy with respect to experimental data by tuning the hyperparameters, such as by manipulating the activation functions, the number of hidden layers, and the neurons in each layer by incorporating optimizers, including Adam and RMsprop. The results confirmed the applicability of the method with an overall value of R2 = 0.987 between the input data and ground-truth data, showing that the most competent model could predict the designated output features (Tdbout, wout, and Eairout). The suggested method is straightforward and was found to be practical in the evaluation of the thermal performance of deployed air conditioning systems under different conditions. The results supported the hypothesis that the proposed deep learning AI algorithm has the potential to explore the feasibility of the three evaporative cooling systems in dynamic ambient conditions for various agricultural and livestock applications.
  • Item
    Process Analysis of Main Organic Compounds Dissolved in Aqueous Phase by Hydrothermal Processing of Açaí (Euterpe oleraceae, Mart.) Seeds: Influence of Process Temperature, Biomass-to-Water Ratio, and Production Scales
    (Basel : MDPI, 2021) da Silva, Conceição de Maria Sales; de Castro, Douglas Alberto Rocha; Santos, Marcelo Costa; Almeida, Hélio da Silva; Schultze, Maja; Lüder, Ulf; Hoffmann, Thomas; Machado, Nélio Teixeira
    This work aims to systematically investigate the influence of process temperature, biomass-to-water ratio, and production scales (laboratory and pilot) on the chemical composition of aqueous and gaseous phases and mass production of chemicals by hydrothermal processing of Açaí (Euterpe oleraceae, Mart.) seeds. The hydrothermal carbonization was carried out at 175, 200, 225, and 250 °C at 2 °C/min and a biomass-to-water ratio of 1:10; at 250 °C at 2 °C/min and biomass-to-water ratios of 1:10, 1:15, and 1:20 in technical scale; and at 200, 225, and 250 °C at 2 °C/min and a biomass-to-water ratio of 1:10 in laboratory scale. The elemental composition (C, H, N, S) in the solid phase was determined to compute the HHV. The chemical composition of the aqueous phase was determined by GC and HPLC and the volumetric composition of the gaseous phase using an infrared gas analyzer. For the experiments in the pilot test scale with a constant biomass-to-water ratio of 1:10, the yields of solid, liquid, and gaseous phases varied between 53.39 and 37.01% (wt.), 46.61 and 59.19% (wt.), and 0.00 and 3.80% (wt.), respectively. The yield of solids shows a smooth exponential decay with temperature, while that of liquid and gaseous phases showed a smooth growth. By varying the biomass-to-water ratios, the yields of solid, liquid, and gaseous reaction products varied between 53.39 and 32.09% (wt.), 46.61 and 67.28% (wt.), and 0.00 and 0.634% (wt.), respectively. The yield of solids decreased exponentially with increasing water-to-biomass ratio, and that of the liquid phase increased in a sigmoid fashion. For a constant biomass-to-water ratio, the concentrations of furfural and HMF decreased drastically with increasing temperature, reaching a minimum at 250 °C, while that of phenols increased. In addition, the concentrations of CH3COOH and total carboxylic acids increased, reaching a maximum concentration at 250 °C. For constant process temperature, the concentrations of aromatics varied smoothly with temperature. The concentrations of furfural, HMF, and catechol decreased with temperature, while that of phenols increased. The concentrations of CH3COOH and total carboxylic acids decreased exponentially with temperature. Finally, for the experiments with varying water-to-biomass ratios, the productions of chemicals (furfural, HMF, phenols, cathecol, and acetic acid) in the aqueous phase is highly dependent on the biomass-to-water ratio. For the experiments at the laboratory scale with a constant biomass-to-water ratio of 1:10, the yields of solids ranged between 55.9 and 51.1% (wt.), showing not only a linear decay with temperature but also a lower degradation grade. The chemical composition of main organic compounds (furfural, HMF, phenols, catechol, and acetic acid) dissolved in the aqueous phase in laboratory-scale study showed the same behavior as those obtained in the pilot-scale study.
  • Item
    Novel Functionalities of Smart Home Devices for the Elastic Energy Management Algorithm
    (Basel : MDPI, 2022) Powroźnik, Piotr; Szcześniak, Paweł; Sobolewski, Łukasz; Piotrowski, Krzysztof
    Energy management in power systems is influenced by such factors as economic and ecological aspects. Increasing the use of electricity produced at a given time from renewable energy sources (RES) by employing the elastic energy management algorithm will allow for an increase in “green energy“ in the energy sector. At the same time, it can reduce the production of electricity from fossil fuels, which is a positive economic aspect. In addition, it will reduce the volume of energy from RES that have to be stored using expensive energy storage or sent to other parts of the grid. The model parameters proposed in the elastic energy management algorithm are discussed. In particular, attention is paid to the time shift, which allows for the acceleration or the delay in the start-up of smart appliances. The actions taken by the algorithm are aimed at maintaining a compromise between the user’s comfort and the requirements of distribution network operators. Establishing the value of the time shift parameter is based on GMDH neural networks and the regression method. In the simulation studies, the extension of selected activities related to the tasks performed in households and its impact on the user’s comfort as well as the response to the increased generation of energy from renewable energy sources have been verified by the simulation research presented in this article. The widespread use of the new functionalities of smart appliance devices together with the elastic energy management algorithm is planned for the future. Such a combination of hardware and software will enable more effective energy management in smart grids, which will be part of national power systems.
  • Item
    Energy Systems and Applications in Agriculture
    (Basel : MDPI, 2022) Sultan, Muhammad; Mahmood, Muhammad Hamid; Ahamed, Md Shamim; Shamshiri, Redmond R.; Shahzad, Muhammad Wakil
    [No abstract available]
  • Item
    Structural and Electrochemical Properties of Layered P2-Na0.8Co0.8Ti0.2O2 Cathode in Sodium-Ion Batteries
    (Basel : MDPI, 2022) Pohle, Björn; Gorbunov, Mikhail V.; Lu, Qiongqiong; Bahrami, Amin; Nielsch, Kornelius; Mikhailova, Daria
    Layered Na0.8Co0.8Ti0.2O2 oxide crystallizes in the β-RbScO2 structure type (P2 modification) with Co(III) and Ti(IV) cations sharing the same crystallographic site in the metal-oxygen layers. It was synthesized as a single-phase material and characterized as a cathode in Na- and Na-ion batteries. A reversible capacity of about 110 mA h g−1 was obtained during cycling between 4.2 and 1.8 V vs. Na+/Na with a 0.1 C current density. This potential window corresponds to minor structural changes during (de)sodiation, evaluated from operando XRD analysis. This finding is in contrast to Ti-free NaxCoO2 materials showing a multi-step reaction mechanism, thus identifying Ti as a structure stabilizer, similar to other layered O3- and P2-NaxCo1−yTiyO2 oxides. However, charging the battery with the Na0.8Co0.8Ti0.2O2 cathode above 4.2 V results in the reversible formation of a O2-phase, while discharging below 1.5 V leads to the appearance of a second P2-layered phase with a larger unit cell, which disappears completely during subsequent battery charge. Extension of the potential window to higher or lower potentials beyond the 4.2–1.8 V range leads to a faster deterioration of the electrochemical performance. After 100 charging-discharging cycles between 4.2 and 1.8 V, the battery showed a capacity loss of about 20% in a conventional carbonate-based electrolyte. In order to improve the cycling stability, different approaches including protective coatings or layers of the cathodic and anodic surface were applied and compared with each other.