Search Results

Now showing 1 - 3 of 3
  • Item
    Layered manganese bismuth tellurides with GeBi4Te7- and GeBi6Te10-type structures: Towards multifunctional materials
    (London : RSC Publ., 2019) Souchay, Daniel; Nentwig, Markus; Günther, Daniel; Keilholz, Simon; de Boor, Johannes; Zeugner, Alexander; Isaeva, Anna; Ruck, Michael; Wolter, Anja U.B.; Büchnerde, Bernd; Oeckler, Oliver
    The crystal structures of new layered manganese bismuth tellurides with the compositions Mn0.85(3)Bi4.10(2)Te7 and Mn0.73(4)Bi6.18(2)Te10 were determined by single-crystal X-ray diffraction, including the use of microfocused synchrotron radiation. These analyses reveal that the layered structures deviate from the idealized stoichiometry of the 12P-GeBi4Te7 (space group P3m1) and 51R-GeBi6Te10 (space group R3m) structure types they adopt. Modified compositions Mn1-xBi4+2x/3Te7 (x = 0.15-0.2) and Mn1-xBi6+2x/3Te10 (x = 0.19-0.26) assume cation vacancies and lead to homogenous bulk samples as confirmed by Rietveld refinements. Electron diffraction patterns exhibit no diffuse streaks that would indicate stacking disorder. The alternating quintuple-layer [M2Te3] and septuple-layer [M3Te4] slabs (M = mixed occupied by Bi and Mn) with 1 : 1 sequence (12P stacking) in Mn0.85Bi4.10Te7 and 2 : 1 sequence (51R stacking) in Mn0.81Bi6.13Te10 were also observed in HRTEM images. Temperature-dependent powder diffraction and differential scanning calorimetry show that the compounds are high-temperature phases, which are metastable at ambient temperature. Magnetization measurements are in accordance with a MnII oxidation state and point at predominantly ferromagnetic coupling in both compounds. The thermoelectric figures of merit of n-type conducting Mn0.85Bi4.10Te7 and Mn0.81Bi6.13Te10 reach zT = 0.25 at 375 °C and zT = 0.28 at 325 °C, respectively. Although the compounds are metastable, compact ingots exhibit still up to 80% of the main phases after thermoelectric measurements up to 400 °C. © The Royal Society of Chemistry 2019.
  • Item
    Remarkable performance recovery in highly defective perovskite solar cells by photo-oxidation
    (London [u.a.] : RSC, 2023) Goetz, Katelyn P.; Thome, Fabian T. F.; An, Qingzhi; Hofstetter, Yvonne J.; Schramm, Tim; Yangui, Aymen; Kiligaridis, Alexander; Loeffler, Markus; Taylor, Alexander D.; Scheblykin, Ivan G.; Vaynzof, Yana
    Exposure to environmental factors is generally expected to cause degradation in perovskite films and solar cells. Herein, we show that films with certain defect profiles can display the opposite effect, healing upon exposure to oxygen under illumination. We tune the iodine content of methylammonium lead triiodide perovskite from understoichiometric to overstoichiometric and expose them to oxygen and light prior to the addition of the top layers of the device, thereby examining the defect dependence of their photooxidative response in the absence of storage-related chemical processes. The contrast between the photovoltaic properties of the cells with different defects is stark. Understoichiometric samples indeed degrade, demonstrating performance at 33% of their untreated counterparts, while stoichiometric samples maintain their performance levels. Surprisingly, overstoichiometric samples, which show low current density and strong reverse hysteresis when untreated, heal to maximum performance levels (the same as untreated, stoichiometric samples) upon the photooxidative treatment. A similar, albeit smaller-scale, effect is observed for triple cation and methylammonium-free compositions, demonstrating the general application of this treatment to state-of-the-art compositions. We examine the reasons behind this response by a suite of characterization techniques, finding that the performance changes coincide with microstructural decay at the crystal surface, reorientation of the bulk crystal structure for the understoichiometric cells, and a decrease in the iodine-to-lead ratio of all films. These results indicate that defect engineering is a powerful tool to manipulate the stability of perovskite solar cells.
  • Item
    Static Dielectric Constant of β-Ga2O3 Perpendicular to the Principal Planes (100), (010), and (001)
    (Pennington, NJ : ECS, 2019) Fiedler, A.; Schewski, R.; Galazka, Z.; Irmscher, K.
    The relative static dielectric constant ℇr of β-Ga2O3 perpendicular to the planes (100), (010), and (001) is determined in the temperature range from 25 K to 500 K by measuring the AC capacitance of correspondingly oriented plate capacitor structures using test frequencies of up to 1 MHz. This allows a direct quantification of the static dielectric constant and a unique direction assignment of the obtained values. At room temperature, ℇr perpendicular to the planes (100), (010), and (001) amounts to 10.2 ± 0.2, 10.87 ± 0.08, and 12.4 ± 0.4, respectively, which clearly evidence the anisotropy expected for β-Ga2O3 due to its monoclinic crystal structure. An increase of ℇr by about 0.5 with increasing temperature from 25 K to 450 K was found for all orientations. Our ℇr data resolve the inconsistencies in the previously available literature data with regard to absolute values and their directional assignment and therefore provide a reliable basis for the simulation and design of devices. © The Author(s) 2019.