Search Results

Now showing 1 - 2 of 2
  • Item
    The synergistic effect of chlorotoxin-mApoE in boosting drug-loaded liposomes across the BBB
    (London : BioMed Central, 2019) Formicola, Beatrice; Dal, Magro, Roberta; Montefusco-Pereira, Carlos V.; Lehr, Claus‑Michael; Koch, Marcus; Russo, Laura; Grasso, Gianvito; Deriu, Marco A.; Danani, Andrea; Bourdoulous, Sandrine; Re, Francesca
    We designed liposomes dually functionalized with ApoE-derived peptide (mApoE) and chlorotoxin (ClTx) to improve their blood-brain barrier (BBB) crossing. Our results demonstrated the synergistic activity of ClTx-mApoE in boosting doxorubicin-loaded liposomes across the BBB, keeping the anti-tumour activity of the drug loaded: mApoE acts promoting cellular uptake, while ClTx promotes exocytosis of liposomes. © 2019 The Author(s).
  • Item
    Targeted delivery of functionalized PLGA nanoparticles to macrophages by complexation with the yeast Saccharomyces cerevisiae
    (Chichester : John Wiley and Sons Ltd, 2020) Kiefer, R.; Jurisic, M.; Dahlem, C.; Koch, M.; Schmitt, M.J.; Kiemer, A.K.; Schneider, M.; Breinig, F.
    Nanoparticles (NPs) are able to deliver a variety of substances into eukaryotic cells. However, their usage is often hampered by a lack of specificity, leading to the undesired uptake of NPs by virtually all cell types. In contrast to this, yeast is known to be specifically taken up into immune cells after entering the body. Therefore, we investigated the interaction of biodegradable surface-modified poly(lactic-co-glycolic acid) (PLGA) particles with yeast cells to overcome the unspecificity of the particulate carriers. Cells of different Saccharomyces cerevisiae strains were characterized regarding their interaction with PLGA-NPs under isotonic and hypotonic conditions. The particles were shown to efficiently interact with yeast cells leading to stable NP/yeast-complexes allowing to associate or even internalize compounds. Notably, applying those complexes to a coculture model of HeLa cells and macrophages, the macrophages were specifically targeted. This novel nano-in-micro carrier system suggests itself as a promising tool for the delivery of biologically active agents into phagocytic cells combining specificity and efficiency.