Search Results

Now showing 1 - 10 of 13
  • Item
    Experimental investigations on the suppression of Q-switching in monolithic 40 GHz mode-locked semiconductor lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Hüttl, Bernd
    Inherent Q-switching as a source of intra-cavity pulse energy modulations, i.e. unwanted amplitude noise, is still a challenging task in order to fabricate monolithic mode-locked semiconductor lasers in view of different commercial applications. In this paper, the results of experimental investigations on the influence of the quantum well number on the occurrence and suppression of Q-switching in 40 GHz mode-locked multiple quantum well buried heterostructure lasers are presented. Improved mode-locked lasers emit short optical pulses (<=1.6 ps) with very low amplitude noise (1-2%) and timing jitter (50-100 fs).
  • Item
    Dissipative soliton interaction in Kerr resonators with high-order dispersion
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Vladimirov, Andrei G.; Tlidi, Mustapha; Taki, Majid
    We consider an optical resonator containing a photonic crystal fiber and driven coherently by an injected beam. This device is described by a generalized Lugiato--Lefever equation with fourth order dispersion We use an asymptotic approach to derive interaction equations governing the slow time evolution of the coordinates of two interacting dissipative solitons. We show that Cherenkov radiation induced by positive fourth-order dispersion leads to a strong increase of the interaction force between the solitons. As a consequence, large number of equidistant soliton bound states in the phase space of the interaction equations can be stabilized. We show that the presence of even small spectral filtering not only dampens the Cherenkov radiation at the soliton tails and reduces the interaction strength, but can also affect the bound state stability.
  • Item
    A generalized Haus master equation model for mode-locked class-B lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Nizette, Michel; Vladimirov, Andrei G.
    Using the multiscale technique we develop a generalized version of the class-B Haus modelocking model that accounts for both the slow gain response to the averaged value of the field intensity and the fast gain dynamics on the scale comparable to the pulse duration. We show that unlike the standard class-B Haus mode-locked model, our model is able to describe not only Q-switched instability of the fundamental mode-locked regime, but also the appearance of harmonic mode-locked regimes with the increase of the pump power.
  • Item
    Light bullets in a time-delay model of a wide-aperture mode-locked semiconductor laser
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Pimenov, Alexander; Javaloyes, Julien; Gurevich, Svetlana V.; Vladimirov, Andrei G.
    Recently, a mechanism of formation of light bullets (LBs) in wide-aperture passively modelocked lasers was proposed. The conditions for existence and stability of these bullets, found in the long cavity limit, were studied theoretically under the mean field (MF) approximation using a Haus-type model equation. In this paper we relax the MF approximation and study LB formation in a model of a wide-aperture three section laser with a long diffractive section and short absorber and gain sections. To this end we derive a nonlocal delay-differential equation (NDDE) model and demonstrate by means of numerical simulations that this model supports stable LBs. We observe that the predictions about the regions of existence and stability of the LBs made previously using MF laser models agree well with the results obtained using the NDDE model. Moreover, we demonstrate that the general conclusions based upon the Haus model that regard the robustness of the LBs remain true in the NDDE model valid beyond the MF approximation, when the gain, losses and diffraction per cavity round-trip are not small perturbations anymore.
  • Item
    The link between coherence echoes and mode locking
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Eydam, Sebastian; Wolfrum, Matthias
    We investigate the appearance of sharp pulses in the mean field of Kuramoto-type globally- coupled phase oscillator systems. In systems with exactly equidistant natural frequencies self- organized periodic pulsations of the mean field, called mode locking, have been described re- cently as a new collective dynamics below the synchronization threshold. We show here that mode locking can appear also for frequency combs with modes of finite width, where the natu- ral frequencies are randomly chosen from equidistant frequency intervals. In contrast to that, so called coherence echoes, which manifest themselves also as pulses in the mean field, have been found in systems with completely disordered natural frequencies as the result of two consecutive stimulations applied to the system. We show that such echo pulses can be explained by a stimula- tion induced mode locking of a subpopulation representing a frequency comb. Moreover, we find that the presence of a second harmonic in the interaction function, which can lead to the global stability of the mode-locking regime for equidistant natural frequencies, can enhance the echo phenomenon significantly. The non-monotonous behavior of echo amplitudes can be explained as a result of the linear dispersion within the self-organized mode-locked frequency comb. Fi- nally we investigate the effect of small periodic stimulations on oscillator systems with disordered natural frequencies and show how the global coupling can support the stimulated pulsation by increasing the width of locking plateaus.
  • Item
    Mode-locking in systems of globally coupled phase oscillators
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Eydam, Sebastian; Wolfrum, Matthias
    We investigate the dynamics of a Kuramoto-type system of globally coupled phase oscillators with equidistant natural frequencies and a coupling strength below the synchronization threshold. It turns out that in such cases one can observe a stable regime of sharp pulses in the mean field amplitude with a pulsation frequency given by spacing of the natural frequencies. This resembles a process known as mode-locking in lasers and relies on the emergence of a phase relation induced by the nonlinear coupling. We discuss the role of the first and second harmonic in the phase-interaction function for the stability of the pulsations and present various bifurcating dynamical regimes such as periodically and chaotically modulated mode-locking, transitions to phase turbulence and intermittency. Moreover, we study the role of the system size and show that in certain cases one can observe type-II supertransients, where the system reaches the globally stable mode-locking solution only after an exponentially long transient of phase turbulence.
  • Item
    Self-starting stable coherent mode-locking in a two-section laser
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Arkhipov, Rostislav M.; Arkhipov, Mikhail V.; Babushkin, Ihar
    In the present work we report the possibility of passive mode-locking based on the coherent interaction of light with the amplifying and absorbing media in lasers with ring and linear cavities. We consider the realistic and practically interesting case when the absorbing and amplifying media are separated in the cavity space but not homogeneously mixed in the volume of the cavity, as was considered earlier in the literature. We perform qualitative consideration of coherent passive mode-locking based on the area theorem of McCall and Hahn and its graphical representation for the first time. We show that other, not soliton scenarios of passive mode-locking exist, and that coherent mode-locking is self-starting (lasing without an injection seeding pulse is possible). We point to the fact that the spectral width of the laser generation can be significantly larger than the spectral bandwidth of the gain medium. Numerical simulations were performed using the system of Maxwell-Bloch equations in the slowly varying envelope approximation.
  • Item
    A model for mode-locking in quantum dot lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Viktorov, Evgeny; Mandel, Paul; Vladimirov, Andrei; Bandelow, Uwe
    We propose a model for passive mode-locking in quantum dot laser and report on specific dynamical properties of the regime which is characterized by a fast gain recovery. No Q-switching instability has been found accompanying the mode-locking. Bistability can occur between the mode-locking regime and zero intensity steady state.
  • Item
    Numerical cooling strategy design for hot rolled dual phase steel
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Suwanpinij, Piyada; Togobytska, Nataliya; Prahl, Ulrich; Weiss, Wolf; Hömberg, Dietmar; Bleck, Wolfgang
    In this article, the Mo-Mn dual phase steel and its process parameters in hot rolling are discussed. The process window was derived by combining the experimental work in a hot deformation dilatometer and numerical calculation of process parameters using rate law models for ferrite and martensite transformation. The ferrite formation model is based on the Leblond and Devaux approach while martensite formation is based on the Koistinen-Marburger (K-M) formula. The carbon enrichment during ferrite formation is taken into account for the following martensite formation. After the completion of the parameter identification for the rate law model, the evolution of phases in multiphase steel can be addressed. Particularly, the simulations allow for predicting the preferable degree of retained strain and holding temperature on the run out table (ROT) for the required ferrite fraction.
  • Item
    Traveling wave modeling, simulation and analysis of quantum-dot mode-locked semiconductor lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Radziunas, Mindaugas; Vladimirov, A.G.; Viktorov, E.A.
    We analyze the dynamics of a mode-locked quantum-dot edge-emitting semiconductor laser consisting of reversely biased saturable absorber and forward biased amplifying sections. To describe spatial non-uniformity of laser parameters, optical fields and carrier distributions we use the traveling wave model, which takes into account carrier exchange processes between wetting layer and quantum dots. A comprehensive parameter study and an optical mode analysis of operation regimes are presented.