Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Heteroepitaxial growth of T-Nb2O5 on SrTiO3

2018, Boschker, Jos E., Markurt, Toni, Albrecht, Martin, Schwarzkopf, Jutta

There is a growing interest in exploiting the functional properties of niobium oxides in general and of the T-Nb2O5 polymorph in particular. Fundamental investigations of the properties of niobium oxides are, however, hindered by the availability of materials with sufficient structural perfection. It is expected that high-quality T-Nb2O5 can be made using heteroepitaxial growth. Here, we investigated the epitaxial growth of T-Nb2O5 on a prototype perovskite oxide, SrTiO3. Even though there exists a reasonable lattice mismatch in one crystallographic direction, these materials have a significant difference in crystal structure: SrTiO3 is cubic, whereas T-Nb2O5 is orthorhombic. It is found that this difference in symmetry results in the formation of domains that have the T-Nb2O5 c-axis aligned with the SrTiO3 <001>s in-plane directions. Hence, the number of domain orientations is four and two for the growth on (100)s- and (110)s-oriented substrates, respectively. Interestingly, the out-of-plane growth direction remains the same for both substrate orientations, suggesting a weak interfacial coupling between the two materials. Despite challenges associated with the heteroepitaxial growth of T-Nb2O5, the T-Nb2O5 films presented in this paper are a significant improvement in terms of structural quality compared to their polycrystalline counterparts.

Loading...
Thumbnail Image
Item

Exciton emission of quasi-2D InGaN in GaN matrix grown by molecular beam epitaxy

2017, Ma, Dingyu, Rong, Xin, Zheng, Xiantong, Wang, Weiying, Wang, Ping, Schulz, Tobias, Albrecht, Martin, Metzner, Sebastian, Müller, Mathias, August, Olga, Bertram, Frank, Christen, Jürgen, Jin, Peng, Li, Mo, Zhang, Jian, Yang, Xuelin, Xu, Fujun, Qin, Zhixin, Ge, Weikun, Shen, Bo, Wang, Xinqiang

We investigate the emission from confined excitons in the structure of a single-monolayer-thick quasi-two-dimensional (quasi-2D) Inx Ga1-x N layer inserted in GaN matrix. This quasi-2D InGaN layer was successfully achieved by molecular beam epitaxy (MBE), and an excellent in-plane uniformity in this layer was confirmed by cathodoluminescence mapping study. The carrier dynamics have also been investigated by time-resolved and excitation-power-dependent photoluminescence, proving that the recombination occurs via confined excitons within the ultrathin quasi-2D InGaN layer even at high temperature up to ∼220 K due to the enhanced exciton binding energy. This work indicates that such structure affords an interesting opportunity for developing high-performance photonic devices.