Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

All-on-Chip Concurrent Measurements of the Static Magnetization and of the Electron Spin Resonance with Microcantilevers

2021, Alfonsov, A., Büchner, B., Kataev, V.

A large variety of the samples of novel magnetic materials, which are of high interest due to their exotic properties, are only available in very small sizes. In some cases, it is not possible to synthesize large single crystals; in other cases, the small size itself is the key prerequisite to manifest a specifically interesting property of the material. The smallness of a sample rises a problem of the detection of the static magnetic response and of the electron spin resonance (ESR) signal. To overcome this problem, we propose to use a cantilever-based (torque-detected) setup with the capability of a simultaneous measurement of ESR and static magnetization. This setup offers a high sensitivity and the ability to acquire along with the ESR signal the components of the magnetization tensor in a single experimental run. Here, we present the working principle of this setup, as well as the estimate of its sensitivity from the measurements on the standard Co Tutton salt sample. © 2021, The Author(s).

Loading...
Thumbnail Image
Item

Topological Electronic Structure and Intrinsic Magnetization in MnBi4Te7: A Bi2Te3 Derivative with a Periodic Mn Sublattice

2019, Vidal, R.C., Zeugner, A., Facio, J.I., Ray, R., Haghighi, M.H., Wolter, A.U.B., Corredor, Bohorquez, L.T., Caglieris, F., Moser, S., Figgemeier, T., Peixoto, T.R.F., Vasili, H.B., Valvidares, M., Jung, S., Cacho, C., Alfonsov, A., Mehlawat, K., Kataev, V., Hess, C., Richter, M., Büchner, B., Van Den Brink, J., Ruck, M., Reinert, F., Bentmann, H., Isaeva, A.

Combinations of nontrivial band topology and long-range magnetic order hold promise for realizations of novel spintronic phenomena, such as the quantum anomalous Hall effect and the topological magnetoelectric effect. Following theoretical advances, material candidates are emerging. Yet, so far a compound that combines a band-inverted electronic structure with an intrinsic net magnetization remains unrealized. MnBi2Te4 has been established as the first antiferromagnetic topological insulator and constitutes the progenitor of a modular (Bi2Te3)n(MnBi2Te4) series. Here, for n=1, we confirm a nonstoichiometric composition proximate to MnBi4Te7. We establish an antiferromagnetic state below 13 K followed by a state with a net magnetization and ferromagnetic-like hysteresis below 5 K. Angle-resolved photoemission experiments and density-functional calculations reveal a topologically nontrivial surface state on the MnBi4Te7(0001) surface, analogous to the nonmagnetic parent compound Bi2Te3. Our results establish MnBi4Te7 as the first band-inverted compound with intrinsic net magnetization providing a versatile platform for the realization of magnetic topological states of matter.

Loading...
Thumbnail Image
Item

Signatures of a magnetic field-induced unconventional nematic liquid in the frustrated and anisotropic spin-chain cuprate LiCuSbO4

2017, Grafe, H.-J., Nishimoto, S., Iakovleva, M., Vavilova, E., Spillecke, L., Alfonsov, A., Sturza, M.-I., Wurmehl, S., Nojiri, H., Rosner, H., Richter, J., Rößler, U.K., Drechsler, S.-L., Kataev, V., Büchner, B.

Modern theories of quantum magnetism predict exotic multipolar states in weakly interacting strongly frustrated spin-1/2 Heisenberg chains with ferromagnetic nearest neighbor (NN) inchain exchange in high magnetic fields. Experimentally these states remained elusive so far. Here we report strong indications of a magnetic field-induced nematic liquid arising above a field of ~13 T in the edge-sharing chain cuprate LiSbCuO4 ≡ LiCuSbO4. This interpretation is based on the observation of a field induced spin-gap in the measurements of the 7Li NMR spin relaxation rate T1−1 as well as a contrasting field-dependent power-law behavior of T1−1 vs. T and is further supported by static magnetization and ESR data. An underlying theoretical microscopic approach favoring a nematic scenario is based essentially on the NN XYZ exchange anisotropy within a model for frustrated spin-1/2 chains and is investigated by the DMRG technique. The employed exchange parameters are justified qualitatively by electronic structure calculations for LiCuSbO4.