Signatures of a magnetic field-induced unconventional nematic liquid in the frustrated and anisotropic spin-chain cuprate LiCuSbO4

Abstract

Modern theories of quantum magnetism predict exotic multipolar states in weakly interacting strongly frustrated spin-1/2 Heisenberg chains with ferromagnetic nearest neighbor (NN) inchain exchange in high magnetic fields. Experimentally these states remained elusive so far. Here we report strong indications of a magnetic field-induced nematic liquid arising above a field of ~13 T in the edge-sharing chain cuprate LiSbCuO4 ≡ LiCuSbO4. This interpretation is based on the observation of a field induced spin-gap in the measurements of the 7Li NMR spin relaxation rate T1−1 as well as a contrasting field-dependent power-law behavior of T1−1 vs. T and is further supported by static magnetization and ESR data. An underlying theoretical microscopic approach favoring a nematic scenario is based essentially on the NN XYZ exchange anisotropy within a model for frustrated spin-1/2 chains and is investigated by the DMRG technique. The employed exchange parameters are justified qualitatively by electronic structure calculations for LiCuSbO4.

Description
Keywords
Citation
Grafe, H.-J., Nishimoto, S., Iakovleva, M., Vavilova, E., Spillecke, L., Alfonsov, A., et al. (2017). Signatures of a magnetic field-induced unconventional nematic liquid in the frustrated and anisotropic spin-chain cuprate LiCuSbO4 (London : Nature Publishing Group). London : Nature Publishing Group. https://doi.org//10.1038/s41598-017-06525-0
License
CC BY 4.0 Unported