Search Results

Now showing 1 - 10 of 16
  • Item
    Ultrashort optical solitons in transparent nonlinear media with arbitrary dispersion
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Amiranashvili, Shalva; Bandelow, Uwe; Akhmediev, Nail
    We consider the propagation of ultrashort optical pulses in nonlinear fibers and suggest a new theoretical framework for the description of pulse dynamics and exact characterization of solitary solutions. Our approach deals with a proper complex generalization of the nonlinear Maxwell equations and completely avoids the use of the slowly varying envelope approximation. The only essential restriction is that fiber dispersion does not favor both the so-called Cherenkov radiation, as well as the resonant generation of the third harmonics, as these effects destroy ultrashort solitons. Assuming that it is not the case, we derive a continuous family of solitary solutions connecting fundamental solitons to nearly single-cycle ultrashort ones for arbitrary anomalous dispersion and cubic nonlinearity.
  • Item
    Calculation of ultrashort pulse propagation based on rational approximations for medium dispersion
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Amiranashvili, Shalva; Bandelow, Uwe; Mielke, Alexander
    Ultrashort optical pulses contain only a few optical cycles and exhibit broad spectra. Their carrier frequency is therefore not well defined and their description in terms of the standard slowly varying envelope approximation becomes questionable. Existing modeling approaches can be divided in two classes, namely generalized envelope equations, that stem from the nonlinear Schrödinger equation, and non-envelope equations which treat the field directly. Based on fundamental physical rules we will present an approach that effectively interpolates between these classes and provides a suitable setting for accurate and highly efficient numerical treatment of pulse propagation along nonlinear and dispersive optical media.
  • Item
    Spatio-temporal pulse propagation in nonlinear dispersive optical media
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Brée, Carsten; Amiranashvili, Shalva; Bandelow, Uwe
    We discuss state-of-art approaches to modeling of propagation of ultrashort optical pulses in one and three spatial dimensions.We operate with the analytic signal formulation for the electric field rather than using the slowly varying envelope approximation, because the latter becomes questionable for few-cycle pulses. Suitable propagation models are naturally derived in terms of unidirectional approximation.
  • Item
    Cancellation of Raman self-frequency shift for compression of optical pulses
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Pickartz, Sabrina; Brée, Carsten; Bandelow, Uwe; Amiranashvili, Shalva
    We study to which extent a fiber soliton can be manipulated by a specially chosen continuous pump wave. A group velocity matched pump scatters at the soliton, which is compressed due to the energy/momentum transfer. As the pump scattering is very sensitive to the velocity matching condition, soliton compression is quickly destroyed by the soliton self-frequency shift (SSFS). This is especially true for ultrashort pulses: SSFS inevitably impairs the degree of compression. We demonstrate numerically that soliton enhancement can be restored to some extent and the compressed soliton can be stabilized, provided that SSFS is canceled by a second pump wave. Still the available compression degree is considerably smaller than that in the Raman-free nonlinear fibers.
  • Item
    Sasa-Satsuma hierarchy of integrable evolution equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Bandelow, Uwe; Ankiewicz, Adrian; Amiranashvili, Shalva; Pickartz, Sabrina; Akhmediev, Nail
    We present the infinite hierarchy of Sasa-Satsuma evolution equations. The corresponding Lax pairs are given, thus proving its integrability. The lowest order member of this hierarchy is the nonlinear Schrödinger equation, while the next one is the Sasa-Satsuma equation that includes third-order terms. Up to sixthorder terms of the hierarchy are given in explicit form, while the provided recurrence relation allows one to explicitly write all higher-order terms. The whole hierarchy can be combined into a single general equation. Each term in this equation contains a real independent coefficient that provides the possibility of adapting the equation to practical needs. A few examples of exact solutions of this general equation with an infinite number of terms are also given explicitly.
  • Item
    Unusual ways of four-wave mixing instability
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Amiranashvili, Shalva; Bandelow, Uwe
    A pump carrier wave in a dispersive system may decay by giving birth to blue- and red-shifted satellite waves due to modulation or four-wave mixing instability. We analyse situations where the satellites are so different from the carrier wave, that the red-shifted satellite either changes its propagation direction (k < 0, ω > 0) or even gets a negative frequency (k, ω < 0). Both situations are beyond the envelope approach and require application of Maxwell equations.
  • Item
    Spectral properties of limiting solitons in optical fibers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Amiranashvili, Shalva; Bandelow, Uwe; Akhmediev, Nail
    It seems to be self-evident that stable optical pulses cannot be considerably shorter than a single oscillation of the carrier field. From the mathematical point of view the solitary solutions of pulse propagation equations should loose stability or demonstrate some kind of singular behavior. Typically, an unphysical cusp develops at the soliton top, preventing the soliton from being too short. Consequently, the power spectrum of the limiting solution has a special behavior: the standard exponential decay is replaced by an algebraic one. We derive the shortest soliton and explicitly calculate its spectrum for the so-called short pulse equation. The latter applies to ultra-short solitons in transparent materials like fused silica that are relevant for optical fibers.
  • Item
    Stabilization of optical pulse transmission by exploiting fiber nonlinearities
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Bandelow, Uwe; Amiranashvili, Shalva; Pickartz, Sabrina
    We prove theoretically, that the evolution of optical solitons can be dramatically influenced in the course of nonlinear interaction with much smaller group velocity matched pulses. Even weak pump pulses can be used to control the solitons, e.g., to compensate their degradation caused by Raman-scattering.
  • Item
    Generalized integrable evolution equations with an infinite number of free parameters
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Akhmediev, Nail; Ankiewicz, Adrian; Amiranashvili, Shalva; Bandelow, Uwe
    Evolution equations such as the nonlinear Schrödinger equation (NLSE) can be extended to include an infinite number of free parameters. The extensions are not unique. We give two examples that contain the NLSE as the lowest-order PDE of each set. Such representations provide the advantage of modelling a larger variety of physical problems due to the presence of an infinite number of higher-order terms in this equation with an infinite number of arbitrary parameters. An example of a rogue wave solution for one of these cases is presented, demonstrating the power of the technique.
  • Item
    Few-cycle optical solitons in dispersive media beyond the envelope approximation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Amiranashvili, Shalva; Bandelow, Uwe; Akhmediev, Nail
    We study the propagation of few-cycle optical solitons in nonlinear media with an anomalous, but otherwise arbitrary, dispersion and a cubic nonlinearity. Our theory extends beyond the slowly varying envelope approximation. The optical field is derived directly from the Maxwell equations under the assumption that generation of the third harmonic is a non-resonant process or at least cannot destroy the pulse prior to inevitable linear damping. The solitary wave solutions are obtained numerically up to nearly single-cycle duration using a modification of the spectral renormalisation method originally developed for the envelope solitons.