Search Results

Now showing 1 - 10 of 12
  • Item
    Evaluating the potential of dietary crude protein manipulation in reducing ammonia emissions from cattle and pig manure: A meta-analysis
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2017-11-22) Sajeev, Erangu Purath Mohankumar; Amon, Barbara; Ammon, Christian; Zollitsch, Werner; Winiwarter, Wilfried
    Dietary manipulation of animal diets by reducing crude protein (CP) intake is a strategic NH3 abatement option as it reduces the overall nitrogen input at the very beginning of the manure management chain. This study presents a comprehensive meta-analysis of scientific literature on NH3 reductions following a reduction of CP in cattle and pig diets. Results indicate higher mean NH3 reductions of 17 ± 6% per %-point CP reduction for cattle as compared to 11 ± 6% for pigs. Variability in NH3 emission reduction estimates reported for different manure management stages and pig categories did not indicate a significant influence. Statistically significant relationships exist between CP reduction, NH3 emissions and total ammoniacal nitrogen content in manure for both pigs and cattle, with cattle revealing higher NH3 reductions and a clearer trend in relationships. This is attributed to the greater attention given to feed optimization in pigs relative to cattle and also due to the specific physiology of ruminants to efficiently recycle nitrogen in situations of low protein intake. The higher NH3 reductions in cattle highlights the opportunity to extend concepts of feed optimization from pigs and poultry to cattle production systems to further reduce NH3 emissions from livestock manure. The results presented help to accurately quantify the effects of NH3 abatement following reduced CP levels in animal diets distinguishing between animal types and other physiological factors. This is useful in the development of emission factors associated with reduced CP as an NH3 abatement option. © 2017, The Author(s).
  • Item
    Calculation of ventilation rates and ammonia emissions : Comparison of sampling strategies for a naturally ventilated dairy barn
    (San Diego, Calif. : Academ. Press, 2020) Janke, David; Willink, Dylia; Ammon, Christian; Hempel, Sabrina; Schrade, Sabine; Demeyer, Peter; Hartung, Eberhard; Amon, Barbara; Ogink, Nico; Amon, Thomas
    Emissions and ventilation rates (VRs) in naturally ventilated dairy barns (NVDBs) are usually measured using indirect methods, where the choice of inside and outside sampling locations (i.e. sampling strategy) is crucial. The goal of this study was to quantify the influence of the sampling strategy on the estimation of emissions and VRs. We equipped a NVDB in northern Germany with an extensive measuring setup capable of measuring emissions under all wind conditions. Ammonia (NH3) and carbon dioxide (CO2) concentrations were measured with two Fourier-transform infrared spectrometers. Hourly values for ventilation rates and emissions for ammonia over a period of nearly a year were derived using the CO2 balance method and five different sampling strategies for the acquisition of indoor and outdoor concentrations were applied. When comparing the strategy estimating the highest emission level to the strategy estimating the lowest, the differences in NH3 emissions in winter, transition, and summer season were +26%, +19% and +11%, respectively. For the ventilation rates, the differences were +80%, +94%, and 63% for the winter, transition and summer season, respectively. By accommodating inside/outside concentration measurements around the entire perimeter of the barn instead of a reduced part of the perimeter (aligned to a presumed main wind direction), the amount of available data substantially increased for around 210% for the same monitoring period.
  • Item
    Influence of Processing Parameters on Fibre Properties during Twin-Screw Extrusion of Poplar Wood Chips
    (Basel : MDPI, 2022) Dittrich, Christian; Pecenka, Ralf; Selge, Benjamin; Ammon, Christian; Kruggel-Emden, Harald
    For sustainable agriculture, the contentious input of peat in growing media needs to be replaced by a substitute with the best possible water-holding capacity (WHC). Wood from fast growing poplar trees, cultivated in short rotation coppices (SRC), is a suitable alternative if it is processed correctly in a twin-screw extruder. The processing parameters, such as the aperture setting of the extruder, moisture content, and specific energy demand (SED), during twin-screw extrusion, as well as their influence on fibre properties such as WHC and particle size distribution, are investigated. SRC-poplar wood chips from clone Max3 are the raw material used for this research. As a result, the best volume-based WHC (75%) at −1 kPa suction tension was achieved for dry extruded wood chip fibre at an aperture setting of 15 mm and an SED of 340 kWh*t−1. The smallest SED of 140 kWh*t−1 was measured at apertures of 35 mm and 40 mm, which resulted in a volume-based WHC of approximately 30% and a dry matter mass flow during processing of 0.289 t*h−1 (40 mm). The particle size distribution of semi-dry wood chips has the highest fine fraction as well as the smallest coarse fraction. Conclusively, poplar wood can be processed fresh and dry into fibre at an acceptable SED, which results in an acceptable WHC.
  • Item
    Methane emissions from the storage of liquid dairy manure: Influences of season, temperature and storage duration
    (Amsterdam [u.a.] : Elsevier, 2021) Cárdenas, Aura; Ammon, Christian; Schumacher, Britt; Stinner, Walter; Herrmann, Christiane; Schneider, Marcel; Weinrich, Sören; Fischer, Peter; Amon, Thomas; Amon, Barbara
    Methane emissions from livestock manure are primary contributors to GHG emissions from agriculture and options for their mitigation must be found. This paper presents the results of a study on methane emissions from stored liquid dairy cow manure during summer and winter storage periods. Manure from the summer and winter season was stored under controlled conditions in barrels at ambient temperature to simulate manure storage conditions. Methane emissions from the manure samples from the winter season were measured in two time periods: 0 to 69 and 0 to 139 days. For the summer storage period, the experiments covered four time periods: from 0 to 70, 0 to 138, 0 to 209, and 0 to 279 continuous days, with probing every 10 weeks. Additionally, at the end of all storage experiments, samples were placed into eudiometer batch digesters, and their methane emissions were measured at 20 °C for another 60 days to investigate the potential effect of the aging of the liquid manure on its methane emissions. The experiment showed that the methane emissions from manure stored in summer were considerably higher than those from manure stored in winter. CH4 production started after approximately one month, reaching values of 0.061 kg CH4 kg−1 Volatile Solid (VS) and achieving high total emissions of 0.148 kg CH4 kg−1 VS (40 weeks). In winter, the highest emissions level was 0.0011 kg CH4 kg−1 VS (20 weeks). The outcomes of these experimental measurements can be used to suggest strategies for mitigating methane emissions from manure storage.
  • Item
    Comparative study of behavioural and milking traits in cows milked with a conventional or individual quarter milking system (Multilactor®) and with different milking persons
    (Warsaw : De Gruyter Open, 2017-4-28) Hoffmann, Gundula; Liermann, Wendy; Ammon, Christian; Rose-Meierhöfer, Sandra
    The aim of this study was to investigate the influence of a new type of milking system on the behaviour of cows during milking by comparing a conventional milking system (CON) with an individual quarter milking system (MUL), MultiLactor®. Sixty-eight dairy cows were observed during their milking times (32 cows in CON, 36 cows in MUL) using video recordings to analyse their behavioural traits. The udder preparation duration, milking duration and milk yield were also evaluated. No significant differences were found between the CON and the MUL regarding cows' head posture (P=0.38), body posture (P=0.85), number of steps (P=0.08) and number of kicks (P=0.56). However, the milk yield was lower (P=0.02), just as the udder preparation duration (P<0.01) and milking duration (P=0.01) were shorter in the CON compared to the MUL. In addition, in regard to the milking person, differences were displayed in the head posture of the milked cows, kick-off or loss of teat cup or milking cluster, and frequency of udder preparation. In conclusion, the investigated milking systems did not markedly influence the behaviour of dairy cows; however, udder preparation duration, milking duration and milk yield were significantly greater for the MUL than for the CON. However, the milking person appears to have a greater impact on the behaviour of the cows than the milking system. © 2017 Sciendo. All Rights Reserved.
  • Item
    Functional relationship of particulate matter (PM) emissions, animal species, and moisture content during manure application
    (Amsterdam [u.a.] : Elsevier Science, 2020) Kabelitz, Tina; Ammon, Christian; Funk, Roger; Münch, Steffen; Biniasch, Oliver; Nübel, Ulrich; Thiel, Nadine; Rösler, Uwe; Siller, Paul; Amon, Barbara; Aarnink, André J.A.; Amon, Thomas
    Livestock manure is recycled to agricultural land as organic fertilizer. Due to the extensive usage of antibiotics in conventional animal farming, antibiotic-resistant bacteria are highly prevalent in feces and manure. The spread of wind-driven particulate matter (PM) with potentially associated harmful bacteria through manure application may pose a threat to environmental and human health. We studied whether PM was aerosolized during the application of solid and dried livestock manure and the functional relationship between PM release, manure dry matter content (DM), treatment and animal species. In parallel, manure and resulting PM were investigated for the survival of pathogenic and antibiotic-resistant bacterial species. The results showed that from manure with a higher DM smaller particles were generated and more PM was emitted. A positive correlation between manure DM and PM aerosolization rate was observed. There was a species-dependent critical dryness level (poultry: 60% DM, pig: 80% DM) where manure began to release PM into the environment. The maximum PM emission potentials were 1 and 3 kg t−1 of applied poultry and pig manure, respectively. Dried manure and resulting PM contained strongly reduced amounts of investigated pathogenic and antibiotic-resistant microorganisms compared to fresh samples. An optimal manure DM regarding low PM emissions and reduced pathogen viability was defined from our results, which was 55–70% DM for poultry manure and 75–85% DM for pig manure. The novel findings of this study increase our detailed understanding and basic knowledge on manure PM emissions and enable optimization of manure management, aiming a manure DM that reduces PM emissions and pathogenic release into the environment.
  • Item
    Case Study of Effects of Mineral N Fertilization Amounts on Water Productivity in Rainfed Winter Rapeseed Cultivation on a Sandy Soil in Brandenburg (Germany) over Three Years
    (Basel : MDPI, 2021) Drastig, Katrin; Kreidenweis, Ulrich; Meyer-Aurich, Andreas; Ammon, Christian; Prochnow, Annette
    Detailed knowledge about farm management practices and related hydrological processes on water productivity is required to substantially increase the productivity of precipitation water use in agriculture. With this in mind, the effect of the nitrogen (N) fertilization level on water productivity of winter oilseed rape (Brassica napus L.) was analyzed using a modeling approach and field measurements. In this first study of interception loss and water productivity in winter oilseed rape, the crop was cultivated in a field experiment on a sandy soil in Brandenburg (Germany) under five nitrogen fertilization treatments with 0, 60, 120, 180, and 240 kg mineral N ha−1 a−1. Based on data from three vegetation periods the water flows and the mass-based water productivity of seeds were calculated on a daily basis with the AgroHyd Farmmodel modeling software. As recommended from the recently developed guidelines of the FAO on water use in agriculture, the method water productivity was applied and uncertainties associated with the calculations were assessed. Economic profit-based water productivity (WPprofit) was calculated considering the costs of fertilization and the optimal level of N fertilization, which was determined based on a quadratic crop yield response function. Mean water productivity of seeds varied from 1.16 kg m−3 for the unfertilized control sample to 2.00 kg m−3 under the highest fertilization rate. N fertilization had a clearly positive effect on WPprofit. However, fertilizer application rates above 120 kg N ha−1 a−1 led to only marginal increases in yields. Water productivity of seeds under the highest fertilization rate was only insignificantly higher than under medium application rates. The optimum N level for the maximal WPprofit identified here was higher with 216 kg N ha−1 a−1. The conclusion is that further research is needed to investigate the interaction between fertilization and other farm management practices.
  • Item
    The Use of a Pressure-Indicating Film to Determine the Effect of Liner Type on the Measured Teat Load Caused by a Collapsing Liner
    (Basel : MDPI, 2017-4-13) Demba, Susanne; Paul, Viktoria; Ammon, Christian; Rose-Meierhöfer, Sandra
    During milking the teat cup liner is the interface between the teat of a dairy cow and the milking system, so it should be very well adapted to the teat. Therefore, the aim of the present study was to determine the effect of liner type on the directly measuring teat load caused by a collapsing liner with a pressure-indicating film. The Extreme Low pressure-indicating film was used to detect the effect of six different liners on teat load. For each liner, six positions in the teat cup were specified, and six repetitions were performed for each position with a new piece of film each time. Analysis of variance was performed to detect differences between the six liners, the positions within a liner, and the measuring areas. The pressure applied to the teat by a liner depends on the technical characteristics of the liner, especially the shape of the barrel, and for all tested liners, a higher teat load was found at the teat end. In conclusion, with the help of pressure-indicating film, it is possible to determine the different effects of liner type by directly measuring teat load due to liner collapse. © 2017 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Particulate matter emissions during field application of poultry manure - The influence of moisture content and treatment
    (Amsterdam [u.a.] : Elsevier Science, 2021) Kabelitz, Tina; Biniasch, Oliver; Ammon, Christian; Nübel, Ulrich; Thiel, Nadine; Janke, David; Swaminathan, Senthilathiban; Funk, Roger; Münch, Steffen; Rösler, Uwe; Siller, Paul; Amon, Barbara; Aarnink, André J. A.; Amon, Thomas
    Along with industry and transportation, agriculture is one of the main sources of primary particulate matter (PM) emissions worldwide. Bioaerosol formation and PM release during livestock manure field application and the associated threats to environmental and human health are rarely investigated. In the temperate climate zone, field fertilization with manure seasonally contributes to local PM air pollution regularly twice per year (spring and autumn). Measurements in a wind tunnel, in the field and computational fluid dynamics (CFD) simulations were performed to analyze PM aerosolization during poultry manure application and the influence of manure moisture content and treatment. A positive correlation between manure dry matter content (DM) and PM release was observed. Therefore, treatments strongly increasing the DM of poultry manure should be avoided. However, high manure DM led to reduced microbial abundance and, therefore, to a lower risk of environmental pathogen dispersion. Considering the findings of PM and microbial measurements, the optimal poultry manure DM range for field fertilization was identified as 50–70%. Maximum PM10 concentrations of approx. 10 mg per m3 of air were measured during the spreading of dried manure (DM 80%), a concentration that is classified as strongly harmful. The modeling of PM aerosolization processes indicated a low health risk beyond a distance of 400 m from the manure application source. The detailed knowledge about PM aerosolization during manure field application was improved with this study, enabling manure management optimization for lower PM aerosolization and pathogenic release into the environment.
  • Item
    Methane Emission Characteristics of Naturally Ventilated Cattle Buildings
    (Basel : MDPI AG, 2020) Hempel, Sabrina; Willink, Diliara; Janke, David; Ammon, Christian; Amon, Barbara; Amon, Thomas
    The mandate to limit global temperature rise calls for a reliable quantification of gaseous pollutant emissions as a basis for effective mitigation. Methane emissions from ruminant fermentation are of particular relevance in the context of greenhouse gas mitigation. The emission dynamics are so far insufficiently understood. We analyzed hourly methane emission data collected during contrasting seasons from two naturally ventilated dairy cattle buildings with concrete floor and performed a second order polynomial regression. We found a parabolic temperature dependence of the methane emissions irrespective of the measurement site and setup. The position of the parabola vertex varied when considering different hours of the day. The circadian rhythm of methane emissions was represented by the pattern of the fitted values of the constant term of the polynomial and could be well explained by feeding management and air flow conditions. We found barn specific emission minima at ambient temperatures around 10 °C to 15 °C. As this identified temperature optimum coincides with the welfare temperature of dairy cows, we concluded that temperature regulation of dairy cow buildings with concrete floor should be considered and further investigated as an emission mitigation measure. Our results further indicated that empirical modeling of methane emissions from the considered type of buildings with a second order polynomial for the independent variable air temperature can increase the accuracy of predicted long-term emission values for regions with pronounced seasonal temperature fluctuations