Search Results

Now showing 1 - 10 of 19
  • Item
    Assessment of continuous vaginal logger-based temperature monitoring in fever-induced gilts
    (Dubai : Science Publications, 2013) Schmidt, Mariana; Ammon, Christian; Schon, Peter; Manteuffel, Christian; Hoffmann, Gundula
    The aim of this study was to identify a low risk method to induce fever in gilts and to evaluate vaginal sensors for temperature monitoring. Therefore, a rhinitis atrophicans vaccine was used to induce fever to evaluate sensors and behavioral patterns. During 11 trials, two of four animals were injected with 2 mL of the vaccine Porcilis AR-T DF (Intervet) and the other two animals were treated with 2 mL of 0.9% NaCl as controls. A temperature logger (TRIX-8, LogTag Recorders, Auckland, New Zealand) was used to continuously monitor the vaginal temperature. Additionally, rectal temperatures were measured four times daily. The water consumption, food intake and locomotion behaviors of the animals were analysed one day before treatment and during the day of the treatment. The vaccine induced fever in all gilts, which occurred approximately 5.87 h after vaccination. The vaginal logger temperatures and the rectal temperatures showed a linear correlation in 21 vaccinated gilts (r = 0.86; p<0.0001) and 22 non-vaccinated gilts (r = 0.65; P<0.0001). The vaginal logger can be continuously used to measure the core temperature. Water intake decreased (p<0.0001) in the gilts with fever, whereas food intake did not change (p = 0.9411). The vaccinated gilts spent 79±16 more minutes per day lying after the vaccination (p<0.001) in comparison to the day before the vaccination. Treatment with this vaccine provides the opportunity to induce fever over a short time period (5.13 h) and mild sickness behavior in gilts to investigate disease indicators.
  • Item
    Environmental Effects over the First 2½ Rotation Periods of a Fertilised Poplar Short Rotation Coppice
    (New York, NY : Springer, 2017-12-7) Kern, Jürgen; Germer, Sonja; Ammon, Christian; Balasus, Antje; Bischoff, Wolf-Anno; Schwarz, Andreas; Forstreuter, Manfred; Kaupenjohann, Martin
    A short rotation coppice (SRC) with poplar was established in a randomised fertilisation experiment on sandy loam soil in Potsdam (Northeast Germany). The main objective of this study was to assess if negative environmental effects as nitrogen leaching and greenhouse gas emissions are enhanced by mineral nitrogen (N) fertiliser applied to poplar at rates of 0, 50 and 75 kg N ha−1 year−1 and how these effects are influenced by tree age with increasing number of rotation periods and cycles of organic matter decomposition and tree growth after each harvesting event. Between 2008 and 2012, the leaching of nitrate (NO3 −) was monitored with self-integrating accumulators over 6-month periods and the emissions of the greenhouse gases (GHG) nitrous oxide (N2O) and carbon dioxide (CO2) were determined in closed gas chambers. During the first 4 years of the poplar SRC, most nitrogen was lost through NO3 − leaching from the main root zone; however, there was no significant relationship to the rate of N fertilisation. On average, 5.8 kg N ha−1 year−1 (13.0 kg CO2equ) was leached from the root zone. Nitrogen leaching rates decreased in the course of the 4-year study parallel to an increase of the fine root biomass and the degree of mycorrhization. In contrast to N leaching, the loss of nitrogen by N2O emissions from the soil was very low with an average of 0.61 kg N ha−1 year−1 (182 kg CO2equ) and were also not affected by N fertilisation over the whole study period. Real CO2 emissions from the poplar soil were two orders of magnitude higher ranging between 15,122 and 19,091 kg CO2 ha−1 year−1 and followed the rotation period with enhanced emission rates in the years of harvest. As key-factors for NO3 − leaching and N2O emissions, the time after planting and after harvest and the rotation period have been identified by a mixed effects model. © 2017, The Author(s).
  • Item
    Awassi sheep keeping in the Arabic steppe in relation to nitrous oxide emission from soil
    (Amsterdam : Elsevier, 2013) Hijazi, Omar; Berg, Werner; Moussa, Samouil; Ammon, Christian; von Bobrutzki, Kristina; Brunsch, Reiner
    Sheep husbandry is the main source of income for farmers in arid zones. Increasing sheep production on steppes may increase the greenhouse gas production. The objective of this study was to investigate the nitrous oxide (N2O) emissions from the steppes for Awassi sheep keeping and feed cropping in arid zones such as Syria. The methodology developed by the Intergovernmental Panel on Climate Change (IPCC) was used to estimate N2O emissions. A survey was conducted on 64 farms in Syria to gather data for analysis. Precipitation and crop yield data from 2001 to 2009 were also used for calculation and modelling. Sheep-keeping systems, precipitation, year and the region have significant effects on N2O emissions (p<0.05). Emissions of N2O from lands with extensive, semi-intensive and intensive systems were 0.30 ± 0.093, 0.598± 0.113 and 2.243± 0.187 kg sheep1year1, respectively. Crop production was higher in regions with high precipitation levels, which helped to reduce N2O emissions. Using more residuals of wheat, cotton and soya as feed for sheep in the keeping systems evaluated may decrease the overuse of steppe regions and N2O emissions. Nitrous oxide emissions of N2O from sheep-keeping areas can be reduced by changing sheep-keeping systems and increasing the crop production in arid zones through artificial irrigation.
  • Item
    Viertelindividuelle Vakuumapplikation für moderne Melksysteme
    (Darmstadt : KTBL, 2012) Ströbel, Ulrich; Rose-Meierhöfer, Sandra; Hoffmann, Gundula; Ammon, Christian; Amon, Thomas; Brunsch, Reiner
    Durch den Einsatz von viertelindividueller Melktechnik können die Bedingungen für Melkpersonal und Kühe erheblich verbessert werden. Die getrennte Schlauchführung für die Milch aus den vier Eutervierteln bietet deutliche Vorteile für die technische Weiterentwicklung dieser Melksysteme. Im Folgenden wird der Prototyp eines viertelindividuellen Melksystems mit Vakuumregelungseinheit vorgestellt, der eine milchflussabhängige, präzise Vakuumanpassung für jedes Euterviertel, verbunden mit einer hohen Rate von Sollwert-Istwert-Abgleichen durch die Regelungseinheit, ermöglicht.
  • Item
    Luftgeschwindigkeit und Hitzebelastung im Milchviehstall - Auswirkungen auf das Tierwohl
    (Darmstadt : KTBL, 2012) Fiedler, Merike; Hoffmann, Gundula; Loebsin, Christiane; Berg, Werner; von Bobrutzki, Kristina; Ammon, Christian; Amon, Thomas
    Das Stallklima hat einen wesentlichen Einfluss auf das Wohlbefinden und die Leistungsfähigkeit von Milchkühen. In der vorliegenden Untersuchung wurden Stallklimamessungen innerhalb und außerhalb eines frei gelüfteten Milchviehstalls, mit dem Fokus auf der Luftgeschwindigkeit im Fress- und Liegebereich, durchgeführt. Die Ergebnisse zeigten, dass die untersuchten Stallbereiche aufgrund der heterogen auftretenden Luftgeschwindigkeiten unterschiedlich belüftet wurden. Des Weiteren wurden die Stallklimamessungen mit physiologischen Tierparametern korreliert, um sie in Bezug auf das thermische Wohlbefinden der Tiere interpretieren zu können. An heißen Tagen wichen die analysierten Parameter deutlich von den übrigen Tagen ab.
  • Item
    Anwendung der Infrarotthermografie bei ferkelführenden Sauen
    (Darmstadt : KTBL, 2013) Schmidt, Mariana; Hoffmann, Gundula; Ammon, Christian; Schön, Peter; Manteuffel, Christian; Amon, Thomas
    In der Nutztierpraxis gilt die Rektaltemperatur als einer der wichtigsten Indikatoren für die Tiergesundheit. Die rektale Temperaturmessung ist jedoch zeitaufwendig und erfordert direkten Tierkontakt. Die Infrarotthermografie (IR-Thermografie) stellt hingegen eine nichtinvasive, kontaktlose Methode dar, um die Körpertemperatur zu messen. Ein Versuch an Sauen im Abferkelbereich unter Praxisbedingungen hat gezeigt, dass sich die Körperregionen Auge und Ohrrücken zur Erfassung der Körpertemperatur mittels IR-Thermografie gut eignen. Damit kann die IR-Thermografie einen wesentlichen Beitrag zur gezielten Krankheitsprävention und zur Verbesserung des Tierwohls ferkeIführender Sauen leisten.
  • Item
    Effect of two cooling frequencies on respiration rate in lactating dairy cows under hot and humid climate conditions
    (Warsaw : De Gruyter Open, 2019) Pinto, Severino; Hoffmann, Gundula; Ammon, Christian; Heuwieser, Wolfgang; Levit, Harel; Halachmi, Ilan; Amon, Thomas
    The aim of this study was to evaluate the effects of evaporative cooling at two different frequen-cies per day on the respiration rate (rr) of lactating dairy cows, considering cow-related factors. twenty multiparous israeli holstein dairy cows housed in a naturally ventilated cowshed were di-vided randomly into two treatment groups. the cows of both groups were exposed to 3 or 8 cooling sessions per day (3xcool vs. 8xcool, respectively). the rr was observed hourly, with a maximum of 12 measurements per day. Body posture (standing vs. lying) was simultaneously documented. milk yield was recorded daily. coat color was determined from a digital photograph. the rr of standing and lying cows was lower in the 8xcool group (60.2 and 51.6 breaths per min (bpm), re-spectively) than in the 3xcool group (73.1 and 65.6 bpm, respectively). For each increment of five kilograms of milk produced, rr increased by one bpm, and the rr of cows in early days in milk (dim) was 12.3 bpm higher than that of cows in late dim. in conclusion, eight cooling sessions per day instead of three lead to a rr abatement in heat-stressed cows under hot conditions, and cow-related factors directly impact the rr during heat stress assessment
  • Item
    Comparative study of behavioural and milking traits in cows milked with a conventional or individual quarter milking system (Multilactor®) and with different milking persons
    (Warsaw : De Gruyter Open, 2017-4-28) Hoffmann, Gundula; Liermann, Wendy; Ammon, Christian; Rose-Meierhöfer, Sandra
    The aim of this study was to investigate the influence of a new type of milking system on the behaviour of cows during milking by comparing a conventional milking system (CON) with an individual quarter milking system (MUL), MultiLactor®. Sixty-eight dairy cows were observed during their milking times (32 cows in CON, 36 cows in MUL) using video recordings to analyse their behavioural traits. The udder preparation duration, milking duration and milk yield were also evaluated. No significant differences were found between the CON and the MUL regarding cows' head posture (P=0.38), body posture (P=0.85), number of steps (P=0.08) and number of kicks (P=0.56). However, the milk yield was lower (P=0.02), just as the udder preparation duration (P<0.01) and milking duration (P=0.01) were shorter in the CON compared to the MUL. In addition, in regard to the milking person, differences were displayed in the head posture of the milked cows, kick-off or loss of teat cup or milking cluster, and frequency of udder preparation. In conclusion, the investigated milking systems did not markedly influence the behaviour of dairy cows; however, udder preparation duration, milking duration and milk yield were significantly greater for the MUL than for the CON. However, the milking person appears to have a greater impact on the behaviour of the cows than the milking system. © 2017 Sciendo. All Rights Reserved.
  • Item
    Comparison of the effects of quarter-individual and conventional milking systems on milkability traits
    (München : European Geopyhsical Union, 2011) Müller, Anika B.; Rose-Meierhöfer, Sandra; Ammon, Christian; Brunsch, Reiner
    This study was carried out to investigate a new quarter-individual milking system called MultiLactor® (Siliconform GmbH, Türkheim, Germany). The MultiLactor enables milking on quarter level basis with low vacuum (37 kPa), sequential pulsation and periodic air inlet. Within the same dairy farm, the influence of this quarter-individual milking system (MULTI) on milkability traits was compared with a conventional milking system (CON). CON was equipped with a conventional milking cluster and used alternating pulsation. Vacuum level was adjusted to 40 kPa. For the study, 84 Holstein Friesian cows were randomly selected and uniformly divided into two herds. During the 30-week survey, the milk flow curves were recorded every other week by using a LactoCorder (WMB, Balgach, Switzerland). Significant differences (P<0.05) between both milking systems were found for all milk flow traits, except for milk yield and decline phase. Concerning the incline (tAN) and plateau (tPL) phase, large differences existed between MULTI and CON. The estimated value of tAN calculated for MULTI (29.4 s) took only half of the time when calculated for CON (56.4 s). The estimated value of tPL at CON was reduced by 1.43 min (35 %) compared to MULTI. Milking process at MULTI (8.49 min) took longer time than for CON (7.43 min). From the study, it was concluded that the effect of shorter tAN in the quarter-individual milked cows may be related to additional prestimulation by an actuator. In contrast, the longer milking time in MULTI is possibly caused by lower vacuum level and periodic air inlet.
  • Item
    Functional relationship of particulate matter (PM) emissions, animal species, and moisture content during manure application
    (Amsterdam [u.a.] : Elsevier Science, 2020) Kabelitz, Tina; Ammon, Christian; Funk, Roger; Münch, Steffen; Biniasch, Oliver; Nübel, Ulrich; Thiel, Nadine; Rösler, Uwe; Siller, Paul; Amon, Barbara; Aarnink, André J.A.; Amon, Thomas
    Livestock manure is recycled to agricultural land as organic fertilizer. Due to the extensive usage of antibiotics in conventional animal farming, antibiotic-resistant bacteria are highly prevalent in feces and manure. The spread of wind-driven particulate matter (PM) with potentially associated harmful bacteria through manure application may pose a threat to environmental and human health. We studied whether PM was aerosolized during the application of solid and dried livestock manure and the functional relationship between PM release, manure dry matter content (DM), treatment and animal species. In parallel, manure and resulting PM were investigated for the survival of pathogenic and antibiotic-resistant bacterial species. The results showed that from manure with a higher DM smaller particles were generated and more PM was emitted. A positive correlation between manure DM and PM aerosolization rate was observed. There was a species-dependent critical dryness level (poultry: 60% DM, pig: 80% DM) where manure began to release PM into the environment. The maximum PM emission potentials were 1 and 3 kg t−1 of applied poultry and pig manure, respectively. Dried manure and resulting PM contained strongly reduced amounts of investigated pathogenic and antibiotic-resistant microorganisms compared to fresh samples. An optimal manure DM regarding low PM emissions and reduced pathogen viability was defined from our results, which was 55–70% DM for poultry manure and 75–85% DM for pig manure. The novel findings of this study increase our detailed understanding and basic knowledge on manure PM emissions and enable optimization of manure management, aiming a manure DM that reduces PM emissions and pathogenic release into the environment.