Search Results

Now showing 1 - 2 of 2
  • Item
    Ontology Design for Pharmaceutical Research Outcomes
    (Cham : Springer, 2020) Say, Zeynep; Fathalla, Said; Vahdati, Sahar; Lehmann, Jens; Auer, Sören; Hall, Mark; Merčun, Tanja; Risse, Thomas; Duchateau, Fabien
    The network of scholarly publishing involves generating and exchanging ideas, certifying research, publishing in order to disseminate findings, and preserving outputs. Despite enormous efforts in providing support for each of those steps in scholarly communication, identifying knowledge fragments is still a big challenge. This is due to the heterogeneous nature of the scholarly data and the current paradigm of distribution by publishing (mostly document-based) over journal articles, numerous repositories, and libraries. Therefore, transforming this paradigm to knowledge-based representation is expected to reform the knowledge sharing in the scholarly world. Although many movements have been initiated in recent years, non-technical scientific communities suffer from transforming document-based publishing to knowledge-based publishing. In this paper, we present a model (PharmSci) for scholarly publishing in the pharmaceutical research domain with the goal of facilitating knowledge discovery through effective ontology-based data integration. PharmSci provides machine-interpretable information to the knowledge discovery process. The principles and guidelines of the ontological engineering have been followed. Reasoning-based techniques are also presented in the design of the ontology to improve the quality of targeted tasks for data integration. The developed ontology is evaluated with a validation process and also a quality verification method.
  • Item
    Encoding Knowledge Graph Entity Aliases in Attentive Neural Network for Wikidata Entity Linking
    (Berlin ; Heidelberg : Springer, 2020) Mulang’, Isaiah Onando; Singh, Kuldeep; Vyas, Akhilesh; Shekarpour, Saeedeh; Vidal, Maria-Esther; Lehmann, Jens; Auer, Sören; Huang, Zhisheng; Beek, Wouter; Wang, Hua; Zhou, Rui; Zhang, Yanchun
    The collaborative knowledge graphs such as Wikidata excessively rely on the crowd to author the information. Since the crowd is not bound to a standard protocol for assigning entity titles, the knowledge graph is populated by non-standard, noisy, long or even sometimes awkward titles. The issue of long, implicit, and nonstandard entity representations is a challenge in Entity Linking (EL) approaches for gaining high precision and recall. Underlying KG in general is the source of target entities for EL approaches, however, it often contains other relevant information, such as aliases of entities (e.g., Obama and Barack Hussein Obama are aliases for the entity Barack Obama). EL models usually ignore such readily available entity attributes. In this paper, we examine the role of knowledge graph context on an attentive neural network approach for entity linking on Wikidata. Our approach contributes by exploiting the sufficient context from a KG as a source of background knowledge, which is then fed into the neural network. This approach demonstrates merit to address challenges associated with entity titles (multi-word, long, implicit, case-sensitive). Our experimental study shows ≈8% improvements over the baseline approach, and significantly outperform an end to end approach for Wikidata entity linking.