Search Results

Now showing 1 - 8 of 8
  • Item
    Efficient coupling of inhomogeneous current spreading and dynamic electro-optical models for broad-area edge-emitting semiconductor devices
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Radziunas, Mindaugas; Zeghuzi, Anissa; Fuhrmann, Jürgen; Koprucki, Thomas; Wünsche, Hans-Jürgen; Wenzel, Hans; Bandelow, Uwe
    We extend a 2 (space) + 1 (time)-dimensional traveling wave model for broad-area edgeemitting semiconductor lasers by a model for inhomogeneous current spreading from the contact to the active zone of the laser. To speedup the performance of the device simulations, we suggest and discuss several approximations of the inhomogeneous current density in the active zone.
  • Item
    Time-dependent simulation of thermal lensing in high-power broad-area semiconductor lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Zeghuzi, Anissa; Wünsche, Hans-Jürgen; Wenzel, Hans; Radziunas, Mindaugas; Fuhrmann, Jürgen; Klehr, Andreas; Bandelow, Uwe; Knigge, Andrea
    We propose a physically realistic and yet numerically applicable thermal model to account for short and long term self-heating within broad-area lasers. Although the temperature increase is small under pulsed operation, a waveguide that is formed within a few-ns-long pulse can result in a transition from a gain-guided to an index-guided structure, leading to near and far field narrowing. Under continuous wave operation the longitudinally varying temperature profile is obtained self-consistently. The resulting unfavorable narrowing of the near field can be successfully counteracted by etching trenches.
  • Item
    Numerical methods for accurate description of ultrashort pulses in optical fibers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Amiranashvili, Shalva; Radziunas, Mindaugas; Bandelow, Uwe; C̆iegis, Raimondas
    We consider a one-dimensional first-order nonlinear wave equation (the so-called forward Maxwell equation, FME) that applies to a few-cycle optical pulse propagating along a preferred direction in a nonlinear medium, e.g., ultrashort pulses in nonlinear fibers. The model is a good approximation to the standard second-order wave equation under assumption of weak nonlinearity. We compare FME to the commonly accepted generalized nonlinear Schrödinger equation, which quantifies the envelope of a quickly oscillating wave field based on the slowly varying envelope approximation. In our numerical example, we demonstrate that FME, in contrast to the envelope model, reveals new spectral lines when applied to few-cycle pulses. We analyze and compare pseudo-spectral numerical schemes employing symmetric splitting for both models. Finally, we adopt these schemes to a parallel computation and discuss scalability of the parallelization.
  • Item
    Efficient coupling of electro-optical and heat-transport models for broad-area semiconductor lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Radziunas, Mindaugas; Fuhrmann, Jürgen; Zeghuzi, Anissa; Wünsche, Hans-Jürgen; Koprucki, Thomas; Brée, Carsten; Wenzel, Hans; Bandelow, Uwe
    In this work, we discuss the modeling of edge-emitting high-power broad-area semiconductor lasers. We demonstrate an efficient iterative coupling of a slow heat transport (HT) model defined on multiple vertical-lateral laser cross-sections with a fast dynamic electro-optical (EO) model determined on the longitudinal-lateral domain that is a projection of the device to the active region of the laser. Whereas the HT-solver calculates temperature and thermally-induced refractive index changes, the EO-solver exploits these distributions and provides time-averaged field intensities, quasi-Fermi potentials, and carrier densities. All these time-averaged distributions are used repetitively by the HT-solver for the generation of the heat sources entering the HT problem solved in the next iteration step.
  • Item
    Beam combining scheme for high-power broad-area semiconductor lasers with Lyot-filtered reinjection: Modeling, simulations, and experiments
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Brée, Carsten; Raab, Volker; Montiel-Ponsoda, Joan; Garre-Werner, Guillermo; Staliunas, Kestutis; Bandelow, Uwe; Radziunas, Mindaugas
    A brightness- and power-scalable polarization beam combining scheme for high-power, broadarea semiconductor laser diodes is investigated numerically and experimentally. To achieve the beam combining, we employ Lyot-filtered optical reinjection from an external cavity, which forces lasing of the individual diodes on interleaved frequency combs with overlapping envelopes and enables a high optical coupling efficiency. Unlike conventional spectral beam combining schemes with diffraction gratings, the optical coupling efficiency is insensitive to thermal drifts of laser wavelengths. This scheme can be used for efficient coupling of a large number of laser diodes and paves the way towards using broad-area laser diode arrays for cost-efficient material processing, which requires high-brilliance emission and optical powers in the kW-regime.
  • Item
    Amplifications of picosecond laser pulses in tapered semiconductor amplifiers : numerical simulations versus experiments
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Tronciu, Vasile; Schwertfeger, Sven; Radziunas, Mindaugas; Klehr, Andreas; Bandelow, Uwe; Wenzel, Hans
    We apply a travelling wave model to the simulation of the amplification of laser pulses generated by Q-switched or mode-locked distributed-Bragg reflector lasers. The power amplifier monolithically integrates a ridge-waveguide section acting as pre-amplifier and a flared gain-region amplifier. The diffraction limited and spectral-narrow band pulses injected in to the pre-amplifier have durations between 10 ps and 100 ps and a peak power of typical 1 W. After the amplifier, the pulses reach a peak power of several tens of Watts preserving the spatial, spectral and temporal properties of the input pulse. We report results obtained by a numerical solution of the travelling-wave equations and compare them with experimental investigations. The peak powers obtained experimentally are in good agreement with the theoretical predictions. The performance of the power amplifier is evaluated by considering the dependence of the pulse energy as a function of different device and material parameters.
  • Item
    Traveling wave analysis of non-thermal far-field blooming in high-power broad-area lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Zeghuzi, Anissa; Radziunas, Mindaugas; Wünsche, Hans-Jürgen; Koester, Jan-Philipp; Wenzel, Hans; Bandelow, Uwe; Knigge, Andrea
    With rising current the lateral far-field angle of high-power broad-area lasers widens (far-field blooming) which can be partly attributed to non-thermal effects due to carrier induced refractive index and gain changes that become the dominant mechanism under pulsed operation. To analyze the non-thermal contribution to far-field blooming we use a traveling wave based model that properly describes the injection of the current into and the diffusion of the carriers within the active region. Although no pre-assumptions regarding the modal composition of the field is made and filamentation is automatically accounted for, the highly dynamic time-dependent optical field distribution can be very well represented by only few modes of the corresponding stationary waveguide equation obtained by a temporal average of the carrier density and field intensity. The reduction of current spreading and spatial holeburning by selecting proper design parameters can substantially improve the beam quality of the laser.
  • Item
    Modeling of current spreading in high-power broad-area lasers and its impact on the lateral far field divergence
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Zeghuzi, Anissa; Radziunas, Mindaugas; Wenzel, Hans; Wünsche, Hans-Jürgen; Bandelow, Uwe; Knigge, Andrea
    The effect of current spreading on the lateral farfield divergence of highpower broadarea lasers is investigated with a timedependent model using different descriptions for the injection of carriers into the active region. Most simulation tools simply assume a spatially constant injection current density below the contact stripe and a vanishing current density beside. Within the driftdiffusion approach, however, the injected current density is obtained from the gradient of the quasiFermi potential of the holes, which solves a Laplace equation in the pdoped region if recombination is neglected. We compare an approximate solution of the Laplace equation with the exact solution and show that for the exact solution the highest farfield divergence is obtained. We conclude that an advanced modeling of the profiles of the injection current densities is necessary for a correct description of farfield blooming in broadarea lasers.