Search Results

Now showing 1 - 10 of 48
Loading...
Thumbnail Image
Item

Mode transitions in distributed-feedback tapered master-oscillator power-amplifier

2008, Radziunas, Mindaugas, Tronciu, Vasile Z., Bandelow, Uwe, Lichtner, Mark, Spreemann, Martin, Wenzel, Hans

Theoretical and experimental investigations have been carried out to study the spectral and spatial behavior of monolithically integrated distributed-feedback tapered master-oscillators power-amplifiers emitting around 973 nm. Introduction of self and cross heating effects and the analysis of longitudinal optical modes allows us to explain experimental results. The results show a good qualitative agreement between measured and calculated characteristics.

Loading...
Thumbnail Image
Item

Time-dependent simulation of thermal lensing in high-power broad-area semiconductor lasers

2019, Zeghuzi, Anissa, Wünsche, Hans-Jürgen, Wenzel, Hans, Radziunas, Mindaugas, Fuhrmann, Jürgen, Klehr, Andreas, Bandelow, Uwe, Knigge, Andrea

We propose a physically realistic and yet numerically applicable thermal model to account for short and long term self-heating within broad-area lasers. Although the temperature increase is small under pulsed operation, a waveguide that is formed within a few-ns-long pulse can result in a transition from a gain-guided to an index-guided structure, leading to near and far field narrowing. Under continuous wave operation the longitudinally varying temperature profile is obtained self-consistently. The resulting unfavorable narrowing of the near field can be successfully counteracted by etching trenches.

Loading...
Thumbnail Image
Item

Asymptotically stable compensation of soliton self-frequency shift

2016, Pickartz, Sabrina, Bandelow, Uwe, Amiranashvili, Shalva

We report the cancellation of the soliton self-frequency shift in nonlinear optical fibers. A soliton which interacts with a group velocity matched low intensity dispersive pump pulse, experiences a continuous blue-shift in frequency, which counteracts the soliton selffrequency shift due to Raman scattering. The soliton self-frequency shift can be fully compensated by a suitably prepared dispersive wave. We quantify this kind of soliton-dispersive wave interaction by an adiabatic approach and demonstrate that the compensation is stable in agreement with numerical simulations.

Loading...
Thumbnail Image
Item

On the propagation of vector ultra-short pulses

2006, Pietrzyk, Monika, Kanattsikov, I., Bandelow, Uwe

A two component vector generalization of the Schäfer-Wayne short pulse equation which describes propagation of ultra-short pulses in optical fibers with Kerr nonlinearity beyond the slowly varying envelope approximation and takes into account the effects of anisotropy and polarization is presented. As a special case, the integrable two-component short pulse equations are constructed which represent the counterpart of the Manakov system in the case of ultra-short pulses.

Loading...
Thumbnail Image
Item

Padé approximant for refractive index and nonlocal envelope equations

2009, Amiranashvili, Shalva, Mielke, Alexander, Bandelow, Uwe

Padé approximant is superior to Taylor expansion when functions contain poles. This is especially important for response functions in complex frequency domain, where singularities are present and intimately related to resonances and absorption. Therefore we introduce a diagonal Padé approximant for the complex refractive index and apply it to the description of short optical pulses. This yields a new nonlocal envelope equation for pulse propagation. The model offers a global representation of arbitrary medium dispersion and absorption, e.g., the fulfillment of the Kramers-Kronig relation can be established. In practice, the model yields an adequate description of spectrally broad pulses for which the polynomial dispersion operator diverges and can induce huge errors.

Loading...
Thumbnail Image
Item

A model equation for ultrashort optical pulses

2008, Amiranashvili, Shalva, Vladimirov, Andrei, Bandelow, Uwe

The nonlinear Schrödinger equation based on the Taylor approximation of the material dispersion can become invalid for ultrashort and few-cycle optical pulses. Instead, we use a rational fit to the dispersion function such that the resonances are naturally accounted for. This approach allows us to derive a simple non-envelope model for short pulses propagating in one spatial dimension. This model is further investigated numerically and analytically.

Loading...
Thumbnail Image
Item

Efficient all-optical control of solitons

2016, Pickartz, Sabrina, Bandelow, Uwe, Amiranashvili, Shalva

We consider the phenomenon of an optical soliton controlled (e.g. amplified) by a much weaker second pulse which is efficiently scattered at the soliton. An important problem in this context is to quantify the small range of parameters at which the interaction takes place. This has been achieved by using adiabatic ODEs for the soliton characteristics, which is much faster than an empirical scan of the full propagation equations for all parameters in question.

Loading...
Thumbnail Image
Item

Modeling of quantum dot lasers with microscopic treatment of Coulomb effects

2010, Koprucki, Thomas, Wilms, Alexander, Knorr, Andreas, Bandelow, Uwe

We present a spatially resolved semiclassical model for the simulation of semiconductor quantum-dot lasers including a multi-species description for the carriers along the optical active region. The model links microscopic determined quantities like scattering rates and dephasing times, that essentially depend via Coulomb interaction on the carrier densities, with macroscopic transport equations and equations for the optical field.78A60 68U2078A60 68U20

Loading...
Thumbnail Image
Item

Calculation of ultrashort pulse propagation based on rational approximations for medium dispersion

2011, Amiranashvili, Shalva, Bandelow, Uwe, Mielke, Alexander

Ultrashort optical pulses contain only a few optical cycles and exhibit broad spectra. Their carrier frequency is therefore not well defined and their description in terms of the standard slowly varying envelope approximation becomes questionable. Existing modeling approaches can be divided in two classes, namely generalized envelope equations, that stem from the nonlinear Schrödinger equation, and non-envelope equations which treat the field directly. Based on fundamental physical rules we will present an approach that effectively interpolates between these classes and provides a suitable setting for accurate and highly efficient numerical treatment of pulse propagation along nonlinear and dispersive optical media.

Loading...
Thumbnail Image
Item

Adiabatic theory of champion solitons

2016, Pickartz, Sabrina, Bandelow, Uwe, Amiranashvili, Shalva

We consider scattering of small-amplitude dispersive waves at an intense optical soliton which constitutes a nonlinear perturbation of the refractive index. Specifically, we consider a single-mode optical fiber and a group velocity matched pair: an optical soliton and a nearly perfectly reflected dispersive wave, a fiber-optical analogue of the event horizon. By combining (i) an adiabatic approach that is used in soliton perturbation theory and (ii) scattering theory from Quantum Mechanics, we give a quantitative account for the evolution of all soliton parameters. In particular, we quantify the increase in the soliton peak power that may result in spontaneous appearance of an extremely large, so-called champion soliton. The presented adiabatic theory agrees well with the numerical solutions of the pulse propagation equation. Moreover, for the first time we predict the full frequency band of the scattered dispersive waves and explain an emerging caustic structure in the space-time domain.