Search Results

Now showing 1 - 10 of 12
  • Item
    Weak error rates for option pricing under linear rough volatility
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Bayer, Christian; Hall, Eric; Tempone, Raúl F.
    In quantitative finance, modeling the volatility structure of underlying assets is vital to pricing options. Rough stochastic volatility models, such as the rough Bergomi model [Bayer, Friz, Gatheral, Quantitative Finance 16(6), 887-904, 2016], seek to fit observed market data based on the observation that the log-realized variance behaves like a fractional Brownian motion with small Hurst parameter, H < 1/2, over reasonable timescales. Both time series of asset prices and option-derived price data indicate that H often takes values close to 0.1 or less, i.e., rougher than Brownian motion. This change improves the fit to both option prices and time series of underlying asset prices while maintaining parsimoniousness. However, the non-Markovian nature of the driving fractional Brownian motion in rough volatility models poses severe challenges for theoretical and numerical analyses and for computational practice. While the explicit Euler method is known to converge to the solution of the rough Bergomi and similar models, its strong rate of convergence is only H. We prove rate H + 1/2 for the weak convergence of the Euler method for the rough Stein--Stein model, which treats the volatility as a linear function of the driving fractional Brownian motion, and, surprisingly, we prove rate one for the case of quadratic payoff functions. Indeed, the problem of weak convergence for rough volatility models is very subtle; we provide examples demonstrating the rate of convergence for payoff functions that are well approximated by second-order polynomials, as weighted by the law of the fractional Brownian motion, may be hard to distinguish from rate one empirically. Our proof uses Talay--Tubaro expansions and an affine Markovian representation of the underlying and is further supported by numerical experiments. These convergence results provide a first step toward deriving weak rates for the rough Bergomi model, which treats the volatility as a nonlinear function of the driving fractional Brownian motion.
  • Item
    RKHS regularization of singular local stochastic volatility McKean--Vlasov models
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Bayer, Christian; Belomestny, Denis; Butkovsky, Oleg; Schoenmakers, John G. M.
    Motivated by the challenges related to the calibration of financial models, we consider the problem of solving numerically a singular McKean-Vlasov equation, which represents a singular local stochastic volatility model. Whilst such models are quite popular among practitioners, unfortunately, its well-posedness has not been fully understood yet and, in general, is possibly not guaranteed at all. We develop a novel regularization approach based on the reproducing kernel Hilbert space (RKHS) technique and show that the regularized model is well-posed. Furthermore, we prove propagation of chaos. We demonstrate numerically that a thus regularized model is able to perfectly replicate option prices due to typical local volatility models. Our results are also applicable to more general McKean--Vlasov equations.
  • Item
    Low-dimensional approximations of high-dimensional asset price models
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Redmann, Martin; Bayer, Christian; Goyal, Pawan
    We consider high-dimensional asset price models that are reduced in their dimension in order to reduce the complexity of the problem or the effect of the curse of dimensionality in the context of option pricing. We apply model order reduction (MOR) to obtain a reduced system. MOR has been previously studied for asymptotically stable controlled stochastic systems with zero initial conditions. However, stochastic differential equations modeling price processes are uncontrolled, have non-zero initial states and are often unstable. Therefore, we extend MOR schemes and combine ideas of techniques known for deterministic systems. This leads to a method providing a good pathwise approximation. After explaining the reduction procedure, the error of the approximation is analyzed and the performance of the algorithm is shown conducting several numerical experiments. Within the numerics section, the benefit of the algorithm in the context of option pricing is pointed out.
  • Item
    Randomized optimal stopping algorithms and their convergence analysis
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Bayer, Christian; Belomestny, Denis; Hager, Paul; Pigato, Paolo; Schoenmakers, John G. M.
    In this paper we study randomized optimal stopping problems and consider corresponding forward and backward Monte Carlo based optimization algorithms. In particular we prove the convergence of the proposed algorithms and derive the corresponding convergence rates.
  • Item
    Markovian approximations of stochastic Volterra equations with the fractional kernel
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Bayer, Christian; Breneis, Simon
    We consider rough stochastic volatility models where the variance process satisfies a stochastic Volterra equation with the fractional kernel, as in the rough Bergomi and the rough Heston model. In particular, the variance process is therefore not a Markov process or semimartingale, and has quite low Hölder-regularity. In practice, simulating such rough processes thus often results in high computational cost. To remedy this, we study approximations of stochastic Volterra equations using an N-dimensional diffusion process defined as solution to a system of ordinary stochastic differential equation. If the coefficients of the stochastic Volterra equation are Lipschitz continuous, we show that these approximations converge strongly with superpolynomial rate in N. Finally, we apply this approximation to compute the implied volatility smile of a European call option under the rough Bergomi and the rough Heston model.
  • Item
    Stability of deep neural networks via discrete rough paths
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Bayer, Christian; Friz, Peter; Tapia, Nikolas
    Using rough path techniques, we provide a priori estimates for the output of Deep Residual Neural Networks. In particular we derive stability bounds in terms of the total p-variation of trained weights for any p ≥ 1.
  • Item
    Optimal stopping with signatures
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Bayer, Christian; Hager, Paul; Riedel, Sebastian; Schoenmakers, John G. M.
    We propose a new method for solving optimal stopping problems (such as American option pricing in finance) under minimal assumptions on the underlying stochastic process. We consider classic and randomized stopping times represented by linear functionals of the associated rough path signature, and prove that maximizing over the class of signature stopping times, in fact, solves the original optimal stopping problem. Using the algebraic properties of the signature, we can then recast the problem as a (deterministic) optimization problem depending only on the (truncated) expected signature. The only assumption on the process is that it is a continuous (geometric) random rough path. Hence, the theory encompasses processes such as fractional Brownian motion which fail to be either semi-martingales or Markov processes.
  • Item
    Pricing high-dimensional Bermudan options with hierarchical tensor formats
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Bayer, Christian; Eigel, Martin; Sallandt, Leon; Trunschke, Philipp
    An efficient compression technique based on hierarchical tensors for popular option pricing methods is presented. It is shown that the ``curse of dimensionality" can be alleviated for the computation of Bermudan option prices with the Monte Carlo least-squares approach as well as the dual martingale method, both using high-dimensional tensorized polynomial expansions. This discretization allows for a simple and computationally cheap evaluation of conditional expectations. Complexity estimates are provided as well as a description of the optimization procedures in the tensor train format. Numerical experiments illustrate the favourable accuracy of the proposed methods. The dynamical programming method yields results comparable to recent Neural Network based methods.
  • Item
    Log-modulated rough stochastic volatility models
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Bayer, Christian; Harang, Fabian; Pigato, Paolo
    We propose a new class of rough stochastic volatility models obtained by modulating the power-law kernel defining the fractional Brownian motion (fBm) by a logarithmic term, such that the kernel retains square integrability even in the limit case of vanishing Hurst index H. The so-obtained log-modulated fractional Brownian motion (log-fBm) is a continuous Gaussian process even for H = 0. As a consequence, the resulting super-rough stochastic volatility models can be analysed over the whole range of Hurst indices between 0 and 1/2, including H = 0, without the need of further normalization. We obtain the usual power law explosion of the skew as maturity T goes to 0, modulated by a logarithmic term, so no flattening of the skew occurs as H goes to 0.
  • Item
    Numerical smoothing with hierarchical adaptive sparse grids and quasi-Monte Carlo methods for efficient option pricing
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Bayer, Christian; Ben Hammouda, Chiheb; Tempone, Raúl F.
    When approximating the expectation of a functional of a stochastic process, the efficiency and performance of deterministic quadrature methods, such as sparse grid quadrature and quasi-Monte Carlo (QMC) methods, may critically depend on the regularity of the integrand. To overcome this issue and reveal the available regularity, we consider cases in which analytic smoothing cannot be performed, and introduce a novel numerical smoothing approach by combining a root finding algorithm with one-dimensional integration with respect to a single well-selected variable. We prove that under appropriate conditions, the resulting function of the remaining variables is a highly smooth function, potentially affording the improved efficiency of adaptive sparse grid quadrature (ASGQ) and QMC methods, particularly when combined with hierarchical transformations (i.e., Brownian bridge and Richardson extrapolation on the weak error). This approach facilitates the effective treatment of high dimensionality. Our study is motivated by option pricing problems, and our focus is on dynamics where the discretization of the asset price is necessary. Based on our analysis and numerical experiments, we show the advantages of combining numerical smoothing with the ASGQ and QMC methods over ASGQ and QMC methods without smoothing and the Monte Carlo approach.