Search Results

Now showing 1 - 9 of 9
  • Item
    Fingertip friction and tactile rating of wrapping papers
    (Berlin ; Heidelberg : Springer, 2022) Jost, Kim Michèle; Drewing, Knut; Bennewitz, Roland; Seifi, Hasti; Kappers, Astrid M. L.; Schneider, Oliver; Drewing, Knut; Pacchierotti, Claudio; Abbasimoshaei, Alireza; Huisman, Gijs; Kern, Thorsten A.
    The tactile exploration and perception of wrapping papers is investigated in terms of fingertip friction and rating of sensory, affective, and evaluative adjectives. Friction coefficients, which vary significantly between samples, are correlated with factors such as valence which are identified in a principal component analysis of subjective ratings. We found that affective appraisals of valence and arousal as well as evaluations of novelty, but not of value, decreased with increasing friction.
  • Item
    Perception of Friction in Tactile Exploration of Micro-structured Rubber Samples
    (Berlin ; Heidelberg : Springer, 2022) Fehlberg, Maja; Kim, Kwang-Seop; Drewing, Knut; Hensel, René; Bennewitz, Roland; Seifi, Hasti; Kappers, Astrid M. L.; Schneider, Oliver; Drewing, Knut; Pacchierotti, Claudio; Abbasimoshaei, Alireza; Huisman, Gijs; Kern, Thorsten A.
    Fingertip friction and the related shear of skin are key mechanical mechanisms in tactile perception, but the perception of friction itself is rarely explored except for the flat surfaces of tactile displays. We investigated the perception of friction for tactile exploration of a unique set of samples whose fabric-like surfaces are equipped with regular arrays of flexible micropillars. The measured fingertip friction increases with decreasing bending stiffness, where the latter is controlled by radius (20–75 µm) and aspect ratio of the micropillars. In forced-choice tasks, participants noticed relative differences in friction as small as 0.2, and even smaller when a sample with less than 100 µm distance between pillars is omitted from the analysis. In an affective ranking of samples upon active touch, the perception of pleasantness is anticorrelated with the measured friction. Our results offer insights towards a rational design of materials with well-controlled surface microstructure which elicit a dedicated tactile appeal.
  • Item
    Single-Polymer Friction Force Microscopy of dsDNA Interacting with a Nanoporous Membrane
    (Washington, DC : ACS Publ., 2023) Schellnhuber, Kordula; Blass, Johanna; Hübner, Hanna; Gallei, Markus; Bennewitz, Roland
    Surface-grafted polymers can reduce friction between solids in liquids by compensating the normal load with osmotic pressure, but they can also contribute to friction when fluctuating polymers entangle with the sliding counter face. We have measured forces acting on a single fluctuating double-stranded DNA polymer, which is attached to the tip of an atomic force microscope and interacts intermittently with nanometer-scale methylated pores of a self-assembled polystyrene-block-poly(4-vinylpyridine) membrane. Rare binding of the polymer into the pores is followed by a stretching of the polymer between the laterally moving tip and the surface and by a force-induced detachment. We present results for the velocity dependence of detachment forces and of attachment frequency and discuss them in terms of rare excursions of the polymer beyond its equilibrium configuration.
  • Item
    Human glabrous skin contains crystallized urea dendriform structures in the stratum corneum which affect the hydration levels
    (Oxford : Wiley-Blackwell, 2023) Infante, Victor Hugo Pacagnelli; Bennewitz, Roland; Kröger, Marius; Meinke, Martina C.; Darvin, Maxim E.
    Glabrous skin is hair-free skin with a high density of sweat glands, which is found on the palms, and soles of mammalians, covered with a thick stratum corneum. Dry hands are often an occupational problem which deserves attention from dermatologists. Urea is found in the skin as a component of the natural moisturizing factor and of sweat. We report the discovery of dendrimer structures of crystalized urea in the stratum corneum of palmar glabrous skin using laser scanning microscopy. The chemical and structural nature of the urea crystallites was investigated in vivo by non-invasive techniques. The relation of crystallization to skin hydration was explored. We analysed the index finger, small finger and tenar palmar area of 18 study participants using non-invasive optical methods, such as laser scanning microscopy, Raman microspectroscopy and two-photon tomography. Skin hydration was measured using corneometry. Crystalline urea structures were found in the stratum corneum of about two-thirds of the participants. Participants with a higher density of crystallized urea structures exhibited a lower skin hydration. The chemical nature and the crystalline structure of the urea were confirmed by Raman microspectroscopy and by second harmonic generated signals in two-photon tomography. The presence of urea dendrimer crystals in the glabrous skin seems to reduce the water binding capacity leading to dry hands. These findings highlight a new direction in understanding the mechanisms leading to dry hands and open opportunities for the development of better moisturizers and hand disinfection products and for diagnostic of dry skin.
  • Item
    Formation of intermittent covalent bonds at high contact pressure limits superlow friction on epitaxial graphene
    (College Park, MD : APS, 2023) Szczefanowicz, Bartosz; Kuwahara, Takuya; Filleter, Tobin; Klemenz, Andreas; Mayrhofer, Leonhard; Bennewitz, Roland; Moseler, Michael
    Epitaxial graphene on SiC(0001) exhibits superlow friction due to its weak out-of-plane interactions. Friction-force microscopy with silicon tips shows an abrupt increase of friction by one order of magnitude above a threshold normal force. Density-functional tight-binding simulations suggest that this wearless high-friction regime involves an intermittent sp3 rehybridization of graphene at contact pressure exceeding 10 GPa. The simultaneous formation of covalent bonds with the tip's silica surface and the underlying SiC interface layer establishes a third mechanism limiting the superlow friction on epitaxial graphene, in addition to dissipation in elastic instabilities and in wear processes.
  • Item
    Revealing the Meissner Corpuscles in Human Glabrous Skin Using In Vivo Non-Invasive Imaging Techniques
    (Basel : Molecular Diversity Preservation International, 2023) Infante, Victor Hugo Pacagnelli; Bennewitz, Roland; Klein, Anna Lena; Meinke, Martina C.
    The presence of mechanoreceptors in glabrous skin allows humans to discriminate textures by touch. The amount and distribution of these receptors defines our tactile sensitivity and can be affected by diseases such as diabetes, HIV-related pathologies, and hereditary neuropathies. The quantification of mechanoreceptors as clinical markers by biopsy is an invasive method of diagnosis. We report the localization and quantification of Meissner corpuscles in glabrous skin using in vivo, non-invasive optical microscopy techniques. Our approach is supported by the discovery of epidermal protrusions which are co-localized with Meissner corpuscles. Index fingers, small fingers, and tenar palm regions of ten participants were imaged by optical coherence tomography (OCT) and laser scan microscopy (LSM) to determine the thickness of the stratum corneum and epidermis and to count the Meissner corpuscles. We discovered that regions containing Meissner corpuscles could be easily identified by LSM with an enhanced optical reflectance above the corpuscles, caused by a protrusion of the strongly reflecting epidermis into the stratum corneum with its weak reflectance. We suggest that this local morphology above Meissner corpuscles has a function in tactile perception.
  • Item
    Molecular stiffness cues of an interpenetrating network hydrogel for cell adhesion
    (Amsterdam : Elsevier, 2022) Li, Bin; Çolak, Arzu; Blass, Johanna; Han, Mitchell; Zhang, Jingnan; Zheng, Yijun; Jiang, Qiyang; Bennewitz, Roland; del Campo, Aránzazu
    Understanding cells' response to the macroscopic and nanoscale properties of biomaterials requires studies in model systems with the possibility to tailor their mechanical properties and different length scales. Here, we describe an interpenetrating network (IPN) design based on a stiff PEGDA host network interlaced within a soft 4-arm PEG-Maleimide/thiol (guest) network. We quantify the nano- and bulk mechanical behavior of the IPN and the single network hydrogels by single-molecule force spectroscopy and rheological measurements. The IPN presents different mechanical cues at the molecular scale, depending on which network is linked to the probe, but the same mechanical properties at the macroscopic length scale as the individual host network. Cells attached to the interpenetrating (guest) network of the IPN or to the single network (SN) PEGDA hydrogel modified with RGD adhesive ligands showed comparable attachment and spreading areas, but cells attached to the guest network of the IPN, with lower molecular stiffness, showed a larger number and size of focal adhesion complexes and a higher concentration of the Hippo pathway effector Yes-associated protein (YAP) than cells linked to the PEGDA single network. The observations indicate that cell adhesion to the IPN hydrogel through the network with lower molecular stiffness proceeds effectively as if a higher ligand density is offered. We claim that IPNs can be used to decipher how changes in ECM design and connectivity at the local scale affect the fate of cells cultured on biomaterials.
  • Item
    Relationship between corrosion and nanoscale friction on a metallic glass
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2022) Ma, Haoran; Bennewitz, Roland
    Metallic glasses are promising materials for microdevices, although corrosion and friction limit their effectiveness and durability. We investigated nanoscale friction on a metallic glass in corrosive solutions after different periods of immersion time using atomic force microscopy to elucidate the influence of corrosion on nanoscale friction. The evolution of friction upon repeated scanning cycles on the corroded surfaces reveals a bilayer surface oxide film, of which the outer layer is removed by the scanning tip. The measurement of friction and adhesion allows one to compare the physicochemical processes of surface dissolution at the interface of the two layers. The findings contribute to the understanding of mechanical contacts with metallic glasses under corrosive conditions by exploring the interrelation of microscopic corrosion mechanisms and nanoscale friction.
  • Item
    Nanoscale friction on MoS2/graphene heterostructures
    (Cambridge : RSC Publ., 2023) Liu, Zhao; Szczefanowicz, Bartosz; Lopes, J. Marcelo J.; Gan, Ziyang; George, Antony; Turchanin, Andrey; Bennewitz, Roland
    Stacked hetero-structures of two-dimensional materials allow for a design of interactions with corresponding electronic and mechanical properties. We report structure, work function, and frictional properties of 1 to 4 layers of MoS2 grown by chemical vapor deposition on epitaxial graphene on SiC(0001). Experiments were performed by atomic force microscopy in ultra-high vacuum. Friction is dominated by adhesion which is mediated by a deformation of the layers to adapt the shape of the tip apex. Friction decreases with increasing number of MoS2 layers as the bending rigidity leads to less deformation. The dependence of friction on applied load and bias voltage can be attributed to variations in the atomic potential corrugation of the interface, which is enhanced by both load and applied bias. Minimal friction is obtained when work function differences are compensated.