Search Results

Now showing 1 - 10 of 20
  • Item
    Pressure- and Temperature-Dependent Crystallization Kinetics of Isotactic Polypropylene under Process Relevant Conditions
    (Basel : MDPI, 2021) Spoerer, Yvonne; Boldt, Regine; Androsch, René; Kuehnert, Ines
    In this study, a non-nucleated homopolymer (HP) and random copolymer (RACO), as well as a nucleated HP and heterophasic copolymer (HECO) were investigated regarding their crystallization kinetics. Using pvT-measurements and fast scanning chip calorimetry (FSC), the crystallization behavior was analyzed as a function of pressure, cooling rate and temperature. It is shown that pressure and cooling rate have an opposite influence on the crystallization temperature of the materials. Furthermore, the addition of nucleating agents to the material has a significant effect on the maximum cooling rate at which the formation of α-crystals is still possible. The non-nucleated HP and RACO materials show significant differences that can be related to the sterically hindering effect of the comonomer units of RACO on crystallization, while the nucleated materials HP and HECO show similar crystallization kinetics despite their different structures. The pressure-dependent shift factor of the crystallization temperature is independent of the material. The results contribute to the description of the relationship between the crystallization kinetics of the material and the process parameters influencing the injection-molding induced morphology. This is required to realize process control in injection molding in order to produce pre-defined morphologies and to design material properties.
  • Item
    A method for determination of length distributions of multiwalled carbon nanotubes before and after melt processing
    (New York, NY [u.a.] : Pergamon Press, 2011) Krause, Beate; Boldt, Regine; Pötschke, Petra
    A relatively simple method to determine the length distribution of carbon nanotubes (CNTs) before and after melt processing was developed. This involves the selection of a suitable solvent for dispersing pristine CNTs as well as to dissolve the matrix of melt mixed composites and the choice of an appropriate nanotube concentration. The length of suitably individualized CNTs was visualized using transmission electron microscopy and length distributions were measured using image analysis. Examples are shown for Baytubes® C150HP and Nanocyl™ NC7000 and their melt mixed composites with polycarbonate where the same procedure was applied to both, measuring the initial length distribution and the distribution after recovering from the composites. These results indicated a significant shortening after melt processing up to 30% of the initial length. © 2010 Elsevier Ltd. All rights reserved.
  • Item
    Methods to characterize the dispersability of carbon nanotubes and their length distribution
    (Weinheim : Wiley-VCH Verl., 2012) Krause, Beate; Mende, Mandy; Petzold, Gudrun; Boldt, Regine; Pötschke, Petra
    Two main properties of carbon nanotube (CNT) materials are discussed in this contribution. First, a method to characterize the dispersability of CNT materials in aqueous surfactant solutions in presented, which also allows conclusions towards the dispersability in other media, like polymer melts. On the other hand it is shown, how the length of CNTs before and after processing, e.g., after melt mixing with thermoplastics, can be quantified. Both methods are illustrated with examples and the practical relevance is shown. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • Item
    The Influence of Salt Anions on Heavy Metal Ion Adsorption on the Example of Nickel
    (Basel : MDPI, 2018) Mende, Mandy; Schwarz, Dana; Steinbach, Christine; Boldt, Regine; Schwarz, Simona
    The biodegradable polysaccharide chitosan possesses protonated and natural amino groups at medium pH values and has therefore been used as an adsorbing material for nickel salts in water treatment. Nickel is a problematic heavy metal ion which can cause various diseases and disorders in living organisms. Here, we show the influence of oxyanions (e.g., nitrate and sulfate) to the adsorption of nickel ions. Hence, simultaneously we are addressing the increasing global problem of nitrate and sulfate ion pollution in groundwater and surface water. A series of adsorption experiments was carried out in order to determine (i) the adsorption equilibrium, (ii) the adsorption capacity in dependence on the initial nickel ion concentration, and (iii) the influence of the anion presented in solution for the adsorption capacity. Surface morphology of chitosan flakes before and after the adsorption process has been studied with SEM-EDX analysis. The chitosan flakes exhibited promising adsorption capacities of 81.9 mg·g−1 and 21.2 mg·g−1 for nickel (sulfate) and nickel (nitrate), respectively. The calculated values of Gibbs free energy change ΔG0 confirm the higher adsorption of nickel ions in presence of sulfate ions. Hence, higher anion valence leads to a higher adsorption capacity.
  • Item
    The Localization Behavior of Different CNTs in PC/SAN Blends Containing a Reactive Component
    (Basel : MDPI, 2021-3-1) Gültner, Marén; Boldt, Regine; Formanek, Petr; Fischer, Dieter; Simon, Frank; Pötschke, Petra
    Co-continuous blend systems of polycarbonate (PC), poly(styrene-co-acrylonitrile) (SAN), commercial non-functionalized multi-walled carbon nanotubes (MWCNTs) or various types of commercial and laboratory functionalized single-walled carbon nanotubes (SWCNTs), and a reactive component (RC, N-phenylmaleimide styrene maleic anhydride copolymer) were melt compounded in one step in a microcompounder. The blend system is immiscible, while the RC is miscible with SAN and contains maleic anhydride groups that have the potential to reactively couple with functional groups on the surface of the nanotubes. The influence of the RC on the localization of MWCNTs and SWCNTs (0.5 wt.%) was investigated by transmission electron microscopy (TEM) and energy-filtered TEM. In PC/SAN blends without RC, MWCNTs are localized in the PC component. In contrast, in PC/SAN-RC, the MWCNTs localize in the SAN-RC component, depending on the RC concentration. By adjusting the MWCNT/RC ratio, the localization of the MWCNTs can be tuned. The SWCNTs behave differently compared to the MWCNTs in PC/SAN-RC blends and their localization occurs either only in the PC or in both blend components, depending on the type of the SWCNTs. CNT defect concentration and surface functionalities seem to be responsible for the localization differences.
  • Item
    Solubility and selectivity effects of the anion on the adsorption of different heavy metal ions onto chitosan
    (Basel : MDPI, 2020) Weißpflog, Janek; Gündel, Alexander; Vehlow, David; Steinbach, Christine; Müller, Martin; Boldt, Regine; Schwarz, Simona; Schwarz, Dana
    The biopolymer chitosan is a very efficient adsorber material for the removal of heavy metal ions from aqueous solutions. Due to the solubility properties of chitosan it can be used as both a liquid adsorber and a solid flocculant for water treatment reaching outstanding adsorption capacities for a number of heavy metal ions. However, the type of anion corresponding to the investigated heavy metal ions has a strong influence on the adsorption capacity and sorption mechanism on chitosan. In this work, the adsorption capacity of the heavy metal ions manganese, iron, cobalt, nickel, copper, and zinc were investigated in dependence on their corresponding anions sulfate, chloride, and nitrate by batch experiments. The selectivity of the different heavy metal ions was analyzed by column experiments. © 2020 by the authors.
  • Item
    Blending In Situ Polyurethane-Urea with Different Kinds of Rubber: Performance and Compatibility Aspects
    (Basel : MDPI, 2018-11-02) Tahir, Muhammad; Heinrich, Gert; Mahmood, Nasir; Boldt, Regine; Wießner, Sven; Stöckelhuber, Klaus Werner
    Specific physical and reactive compatibilization strategies are applied to enhance the interfacial adhesion and mechanical properties of heterogeneous polymer blends. Another pertinent challenge is the need of energy-intensive blending methods to blend high-tech polymers such as the blending of a pre-made hard polyurethane (-urea) with rubbers. We developed and investigated a reactive blending method to prepare the outstanding blends based on polyurethane-urea and rubbers at a low blending temperature and without any interfacial compatibilizing agent. In this study, the polyurethane-urea (PUU) was synthesized via the methylene diphenyl diisocyanate end-capped prepolymer and m-phenylene diamine based precursor route during blending at 100 °C with polar (carboxylated nitrile rubber (XNBR) and chloroprene rubber (CR)) and non-polar (natural rubber (NR), styrene butadiene rubber (sSBR), and ethylene propylene butadiene rubber (EPDM)) rubbers. We found that the in situ PUU reinforces the tensile response at low strain region and the dynamic-mechanical response up to 150 °C in the case of all used rubbers. Scanning electron microscopy reveals a stronger rubber/PUU interface, which promotes an effective stress transfer between the blend phases. Furthermore, energy filtered transmission electron microscopy (EFTEM) based elemental carbon map identifies an interphase region along the interface between the nitrile rubber and in situ PUU phases of this exemplary blend type.
  • Item
    Effect of Molar Mass on Critical Specific Work of Flow for Shear-Induced Crystal Nucleation in Poly (l-Lactic Acid)
    (Basel : MDPI, 2021) Du, Mengxue; Jariyavidyanont, Katalee; Kühnert, Ines; Boldt, Regine; Androsch, René
    The concept of specific work of flow has been applied for the analysis of critical shearing conditions for the formation of crystal nuclei in poly (l-lactic acid) (PLLA). Systematic variation in both time and rate of shearing the melt in a parallel-plate rheometer revealed that these parameters are interconvertible regarding the shear-induced formation of crystal nuclei; that is, low shear rate can be compensated for by increasing the shear time and vice versa. This result supports the view that critical shearing conditions can be expressed by a single quantity, providing additional options for tailoring polymer processing routes when enhanced nuclei formation is desired/unwanted. Analysis of PLLA of different mass-average molar masses of 70, 90, 120, and 576 kDa confirmed improved shear-induced crystal nucleation for materials of higher molar mass, with critical specific works of flow, above which shear-induced nuclei formation occurs, of 550, 60, 25, and 5 kPa, respectively.
  • Item
    Localization of carbon nanotubes in polyamide 6 blends with non-reactive and reactive rubber
    (Oxford : Elsevier Science, 2014) Krause, Beate; Schneider, Cecile; Boldt, Regine; Weber, Martin; Park, Hye Jin; Pötschke, Petra
    Blending of two immiscible polymer matrices can be an effective way to combine favourable properties of both blend partners. The additional incorporation of multiwalled carbon nanotubes (MWCNTs) in such thermoplastic blends may further enhance the blend properties and especially generate electrical conductivity. In the present study, 20 wt.% of non-reactive rubber and maleic anhydride functionalized rubber were melt blended with polyamide 6 and 3 wt.% MWCNTs by using different incorporation strategies. For the blends containing non-reactive rubber, the MWCNTs were always localized selectively in the thermodynamically preferred polyamide phase as shown by TEM images and electrical measurements. Interestingly, the different strategies resulted in different localization behaviours of the MWCNTs in case of the reactive rubber. These findings demonstrate the significant influence of maleic anhydride groups of the rubber component on localization of MWCNTs in the different blend phases which results in different values of electrical volume resistivity of the blends. © 2014 The Authors. Published by Elsevier Ltd.
  • Item
    A new strategy to improve viscoelasticity, crystallization and mechanical properties of polylactide
    (Amsterdam [u.a.] : Elsevier Science, 2021) Huang, Ying; Müller, Michael Thomas; Boldt, Regine; Zschech, Carsten; Gohs, Uwe; Wießner, Sven
    Biodegradable polylactide/masticated natural rubber (PLA/mNR) blends were prepared by electron induced reactive processing (EIReP) without using any chemical additives. The PLA/mNR blends showed droplet-matrix morphology with decreased mNR particle size after EIReP treatment. The absolute value of complex viscosity and storage modulus increased significantly for the EIReP modified blends, suggesting the improved melt strength and elasticity. The crystallization investigation showed that the cold crystallization peak of PLA phase gradually disappeared after EIReP modification. Instead, the crystallization peak arose during melt cooling process. Consequently, the crystallinity of PLA phase increased from 6.2% to 39.0% as the mNR content increased from 0 to 20 wt%. It was found that the softening temperature of PLA examined by dynamic mechanical analysis increased effectively with the characters of higher modulus compared to the non-modified blends. The EIReP modified blends exhibited excellent mechanical properties with 7-fold increase of impact toughness compared with neat PLA, implying a superior interfacial adhesion and chain interactions between the two polymer phases. Furthermore, the thermogravimetric analysis demonstrated that the thermal stability was slightly enhanced for the EIReP modified blends.