Search Results

Now showing 1 - 10 of 10
Loading...
Thumbnail Image
Item

Long-term studies of mesosphere and lower-thermosphere summer length definitions based on mean zonal wind features observed for more than one solar cycle at middle and high latitudes in the Northern Hemisphere

2022, Jaen, Juliana, Renkwitz, Toralf, Chau, Jorge L., He, Maosheng, Hoffmann, Peter, Yamazaki, Yosuke, Jacobi, Christoph, Tsutsumi, Masaki, Matthias, Vivien, Hall, Chris

Specular meteor radars (SMRs) and partial reflection radars (PRRs) have been observing mesospheric winds for more than a solar cycle over Germany (g1/4g54g gN) and northern Norway (g1/4g69g gN). This work investigates the mesospheric mean zonal wind and the zonal mean geostrophic zonal wind from the Microwave Limb Sounder (MLS) over these two regions between 2004 and 2020. Our study focuses on the summer when strong planetary waves are absent and the stratospheric and tropospheric conditions are relatively stable. We establish two definitions of the summer length according to the zonal wind reversals: (1) the mesosphere and lower-thermosphere summer length (MLT-SL) using SMR and PRR winds and (2) the mesosphere summer length (M-SL) using the PRR and MLS. Under both definitions, the summer begins around April and ends around middle September. The largest year-to-year variability is found in the summer beginning in both definitions, particularly at high latitudes, possibly due to the influence of the polar vortex. At high latitudes, the year 2004 has a longer summer length compared to the mean value for MLT-SL as well as 2012 for both definitions. The M-SL exhibits an increasing trend over the years, while MLT-SL does not have a well-defined trend. We explore a possible influence of solar activity as well as large-scale atmospheric influences (e.g., quasi-biennial oscillation (QBO), El Niño-Southern Oscillation (ENSO), major sudden stratospheric warming events). We complement our work with an extended time series of 31 years at middle latitudes using only PRR winds. In this case, the summer length shows a breakpoint, suggesting a non-uniform trend, and periods similar to those known for ENSO and QBO.

Loading...
Thumbnail Image
Item

Middle- and High-Latitude Mesosphere and Lower Thermosphere Mean Winds and Tides in Response to Strong Polar-Night Jet Oscillations

2019, Conte, J. Federico, Chau, Jorge L., Peters, Dieter H.W.

The dynamical behavior of the mesosphere and lower thermosphere (MLT) region during strongly disturbed wintertime conditions commonly known as polar-night jet oscillations (PJOs) is described in detail and compared to other wintertime conditions. For this purpose, wind measurements provided by two specular meteor radars located at Andenes (69°N, 16°E) and Juliusruh (54°N, 13°E) are used to estimate horizontal mean winds and tides as an observational basis. Winds and tidal main features are analyzed and compared for three different cases: major sudden stratospheric warming (SSW) with (a) strong PJO event, (b) non-PJO event, and (c) no major SSWs. We show that the distinction into strong PJOs, non-PJOs, and winters with no major SSWs is better suited to identify differences in the behavior of the mean winds and tides during the boreal winter. To assess the impact of the stratospheric disturbed conditions on the MLT region, we investigate the 30-year nudged simulation by the Extended Canadian Middle Atmosphere Model. Analysis of geopotential height disturbances suggests that changes in the location of the polar vortex at mesospheric heights are responsible for the jets observed in the MLT mean winds during strong PJOs, which in turn influence the evolution of semidiurnal tides by increasing or decreasing their amplitudes depending on the tidal component. © 2019. The Authors.

Loading...
Thumbnail Image
Item

Quasi‐2‐Day Wave in Low‐Latitude Atmospheric Winds as Viewed From the Ground and Space During January–March, 2020

2021, He, Maosheng, Chau, Jorge L., Forbes, Jeffrey M., Zhang, Xiaoli, Englert, Christoph R., Harding, Brian J., Immel, Thomas J., Lima, Lourivaldo M., Bhaskar Rao, S. Vijaya, Ratnam, M. Venkat, Li, Guozhu, Harlander, John M., Marr, Kenneth D., Makela, Jonathan J.

Horizontal winds from four low-latitude (±15°) specular meteor radars (SMRs) and the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument on the ICON satellite, are combined to investigate quasi-2-day waves (Q2DWs) in early 2020. SMRs cover 80–100 km altitude whereas MIGHTI covers 95–300 km. Q2DWs are the largest dynamical feature of the summertime middle atmosphere. At the overlapping altitudes, comparisons between the derived Q2DWs exhibit excellent agreement. The SMR sensor array analyses show that the dominant zonal wavenumbers are s = +2 and + 3, and help resolve ambiguities in MIGHTI results. We present the first Q2DW depiction for s = +2 and s = +3 between 95 and 200 km, and show that their amplitudes are almost invariant between 80 and 100 km. Above 106 km, Q2DW amplitudes and phases present structures that might result from the superposition of Q2DWs and their aliased secondary waves.

Loading...
Thumbnail Image
Item

Quasi‐10‐Day Wave and Semidiurnal Tide Nonlinear Interactions During the Southern Hemispheric SSW 2019 Observed in the Northern Hemispheric Mesosphere

2020, He, Maosheng, Chau, Jorge L., Forbes, Jeffrey M., Thorsen, Denise, Li, Guozhu, Siddiqui, Tarique Adnan, Yamazaki, Yosuke, Hocking, Wayne K.

Mesospheric winds from three longitudinal sectors at 65°N and 54°N latitude are combined to diagnose the zonal wave numbers (m) of spectral wave signatures during the Southern Hemisphere sudden stratospheric warming (SSW) 2019. Diagnosed are quasi-10- and 6-day planetary waves (Q10DW and Q6DW, m = 1), solar semidiurnal tides with m = 1, 2, 3 (SW1, SW2, and SW3), lunar semidiurnal tide, and the upper and lower sidebands (USB and LSB, m = 1 and 3) of Q10DW-SW2 nonlinear interactions. We further present 7-year composite analyses to distinguish SSW effects from climatological features. Before (after) the SSW onset, LSB (USB) enhances, accompanied by the enhancing (fading) Q10DW, and a weakening of climatological SW2 maximum. These behaviors are explained in terms of Manley-Rowe relation, that is, the energy goes first from SW2 to Q10DW and LSB, and then from SW2 and Q10DW to USB. Our results illustrate that the interactions can explain most wind variabilities associated with the SSW. © 2020. The Authors.

Loading...
Thumbnail Image
Item

Mesospheric gravity wave activity estimated via airglow imagery, multistatic meteor radar, and SABER data taken during the SIMONe–2018 campaign

2021, Vargas, Fabio, Chau, Jorge L., Charuvil Asokan, Harikrishnan, Gerding, Michael

We describe in this study the analysis of small and large horizontal-scale gravity waves from datasets composed of images from multiple mesospheric airglow emissions as well as multistatic specular meteor radar (MSMR) winds collected in early November 2018, during the SIMONe-2018 (Spread-spectrum Interferometric Multi-static meteor radar Observing Network) campaign. These ground-based measurements are supported by temperature and neutral density profiles from TIMED/SABER (Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry) satellite in orbits near Kühlungsborn, northern Germany (54.1 N, 11.8 E). The scientific goals here include the characterization of gravity waves and their interaction with the mean flow in the mesosphere and lower thermosphere and their relationship to dynamical conditions in the lower and upper atmosphere. We have obtained intrinsic parameters of small- and large-scale gravity waves and characterized their impact in the mesosphere via momentum flux (FM) and momentum flux divergence (FD) estimations. We have verified that a small percentage of the detected wave events is responsible for most of FM measured during the campaign from oscillations seen in the airglow brightness and MSMR winds taken over 45 h during four nights of clear-sky observations. From the analysis of small-scale gravity waves (λh < 725 km) seen in airglow images, we have found FM ranging from 0.04-24.74 m2 s-2 (1.62 ± 2.70 m2 s-2 on average). However, small-scale waves with FM > 3 m2 s-2 (11 % of the events) transport 50 % of the total measured FM. Likewise, wave events of FM > 10 m2 s-2 (2 % of the events) transport 20 % of the total. The examination of large-scale waves (λh > 725 km) seen simultaneously in airglow keograms and MSMR winds revealed amplitudes > 35 %, which translates into FM Combining double low line 21.2-29.6 m2 s-2. In terms of gravity-wave-mean-flow interactions, these large FM waves could cause decelerations of FD Combining double low line 22-41 m s-1 d-1 (small-scale waves) and FD Combining double low line 38-43 m s-1 d-1 (large-scale waves) if breaking or dissipating within short distances in the mesosphere and lower thermosphere region. © 2021 Fabio Vargas et al.

Loading...
Thumbnail Image
Item

Exceptionally strong summer-like zonal wind reversal in the upper mesosphere during winter 2015/16

2017-6-12, Stober, Gunter, Matthias, Vivien, Jacobi, Christoph, Wilhelm, Sven, Höffner, Josef, Chau, Jorge L.

The 2015/16 Northern Hemisphere winter season was marked by peculiarities in the circulation pattern in the high-latitude mesopause region. Wind measurements from the Andenes (69° N, 13° E) meteor radar show westward winds below 84 km and eastward winds above. This wind pattern in the zonal wind was observable between the end of December 2015 and the end of January 2016, i.e., conditions that are typical for the summer were found during winter. Additional meteor radar measurements at midlatitude stations did not show such a zonal wind reversal but indicate, together with the polar latitude stations, a reversal of the horizontal temperature gradient. This is confirmed by global satellite measurements. Therefore, it is plausible that the polar latitude summer-like zonal wind reversal in December–January is in accordance with the reversed horizontal temperature gradient assuming a thermal wind balance between mid- and polar latitudes. The reversed horizontal temperature gradient itself is induced by stationary planetary waves at lower and midlatitudes in the mesosphere, leading to a weakening of the residual circulation above the European sector.

Loading...
Thumbnail Image
Item

On the role of anisotropic MF/HF scattering in mesospheric wind estimation

2018-10-1, Renkwitz, Toralf, Tsutsumi, Masaki, Laskar, Fazlul I., Chau, Jorge L., Latteck, Ralph

The Saura radar is designed and used to measure winds and electron densities at polar latitudes (69∘N) within the D region, namely between 50 and 100 km altitude. A relatively narrow radar beam can be generated and steered into distinct pointing directions as a rather large antenna array is used. From the observed radial velocities of the individual pointing directions, the horizontal and vertical wind fields can be obtained using the Doppler beam swinging (DBS) method. With recent upgrades to the radar, the interferometric capabilities are largely improved allowing simultaneous application of different wind estimation techniques now, and also echo localization. In recent studies, Saura DBS winds assuming isotropic scattering were found to be underestimated in comparison with highly reliable winds observed with the MAARSY MST radar in the presence of polar mesospheric summer echoes (PMSE). This underestimation has been investigated by analyzing the scattering positions as well as applying the imaging Doppler interferometry technique. Besides this, Saura winds derived with the classical DBS method seem to be error prone at altitudes above 90 km and even below this altitude for periods of enhanced ionization, e.g., particle precipitations. Various methods taking into account the scattering positions have been used to correct the wind underestimation. These winds are compared to MST radar winds during PMSE, and an optimal combination of these methods for the Saura radar is presented. This combined wind data appears to be reliable; it shows reasonable amplitudes as well as tidal structures for the entire altitude region.

Loading...
Thumbnail Image
Item

Horizontal Wavenumber Spectra of Vertical Vorticity and Horizontal Divergence of Mesoscale Dynamics in the Mesosphere and Lower Thermosphere Using Multistatic Specular Meteor Radar Observations

2022, Poblet, Facundo L., Chau, Jorge L., Conte, J. Federico, Avsarkisov, Victor, Vierinen, Juha, Charuvil Asokan, Harikrishnan

Specular meteor radars (SMRs) have significantly contributed to the understanding of wind dynamics in the mesosphere and lower thermosphere (MLT). We present a method to estimate horizontal correlations of vertical vorticity (Qzz) and horizontal divergence (P) in the MLT, using line-of-sight multistatic SMRs velocities, that consists of three steps. First, we estimate 2D, zonal, and meridional correlation functions of wind fluctuations (with periods less than 4 hr and vertical wavelengths smaller than 4 km) using the wind field correlation function inversion (WCFI) technique. Then, the WCFI's statistical estimates are converted into longitudinal and transverse components. The conversion relation is obtained by considering the rotation about the vertical direction of two velocity vectors, from an east-north-up system to a meteor-pair-dependent cylindrical system. Finally, following a procedure previously applied in the upper troposphere and lower stratosphere to airborne wind measurements, the longitudinal and transverse spatial correlations are fitted, from which Qzz, P, and their spectra are directly estimated. The method is applied to a special Spread spectrum Interferometric Multistatic meteor radar Observing Network data set, obtained over northern Germany for seven days in November 2018. The results show that in a quasi-axisymmetric scenario, P was more than five times larger than Qzz for the horizontal wavelengths range given by ∼50–400 km, indicating a predominance of internal gravity waves over vortical modes of motion as a possible explanation for the MLT mesoscale dynamics during this campaign.

Loading...
Thumbnail Image
Item

Patches of polar mesospheric summer echoes characterized from radar imaging observations with MAARSY

2016, Sommer, Svenja, Chau, Jorge L.

A recent study has hypothesized that polar mesospheric summer echoes (PMSEs) might consist mainly of localized isotropic scattering. These results have been inferred from indirect measurements. Using radar imaging with the Middle Atmosphere Alomar Radar System (MAARSY), we observed horizontal structures that support our previous findings. We observe that small-scale irregularities, causing isotropic scattering, are organized in patches. We find that patches of PMSEs, as observed by the radar, are usually smaller than 1 km. These patches occur throughout the illuminated volume, supporting that PMSEs are caused by localized isotropic or inhomogeneous scattering. Furthermore, we show that imaging can be used to identify side lobe detections, which have a significant influence even for narrow beam observations. Improved spectra estimations are obtained by selecting the desired volume to study parameters such as spectral width and to estimate the derived energy dissipation rates. In addition, a combined wide beam experiment and radar imaging is used to resolve the radial velocity and spectral width at different volumes within the illuminated volume.

Loading...
Thumbnail Image
Item

High-Order Solar Migrating Tides Quench at SSW Onsets

2020, He, Maosheng, Forbes, Jeffrey M., Chau, Jorge L., Li, Guozhu, Wan, Weixing, Korotyshkin, Dmitry V.

Sudden stratospheric warming events (SSWs) are the most spectacular atmospheric vertical coupling processes, well-known for being associated with diverse wave activities in the upper atmosphere and ionosphere. The first four solar tidal harmonics have been reported as being engaged. Here, combining mesospheric winds detected by three midlatitude radars, we demonstrate at least the first six harmonics that occurred during SSW 2018. Wave number diagnosis demonstrates that all six harmonics are dominated by migrating components. Wavelet analyses reveal that the fourth, fifth, and sixth harmonics quench after the SSW onset. The six harmonics and the quenching appear also in a statistical analysis based on near-12-year observations from one of the radars. We attribute the quenching to reversal of the background eastward wind. ©2020. The Authors.