Search Results

Now showing 1 - 3 of 3
  • Item
    Biological Risk Assessment of Three Dental Composite Materials following Gas Plasma Exposure
    (Basel : MDPI, 2022) Bekeschus, Sander; Miebach, Lea; Pommerening, Jonas; Clemen, Ramona; Witzke, Katharina
    Gas plasma is an approved technology that generates a plethora of reactive oxygen species, which are actively applied for chronic wound healing. Its particular antimicrobial action has spurred interest in other medical fields, such as periodontitis in dentistry. Recent work has indicated the possibility of performing gas plasma-mediated biofilm removal on teeth. Teeth frequently contain restoration materials for filling cavities, e.g., resin-based composites. However, it is unknown if such materials are altered upon gas plasma exposure. To this end, we generated a new in-house workflow for three commonly used resin-based composites following gas plasma treatment and incubated the material with human HaCaT keratinocytes in vitro. Cytotoxicity was investigated by metabolic activity analysis, flow cytometry, and quantitative high-content fluorescence imaging. The inflammatory consequences were assessed using quantitative analysis of 13 different chemokines and cytokines in the culture supernatants. Hydrogen peroxide served as the control condition. A modest but significant cytotoxic effect was observed in the metabolic activity and viability after plasma treatment for all three composites. This was only partially treatment time-dependent and the composites alone affected the cells to some extent, as evident by differential secretion profiles of VEGF, for example. Gas plasma composite modification markedly elevated the secretion of IL6, IL8, IL18, and CCL2, with the latter showing the highest correlation with treatment time (Pearson’s r > 0.95). Cell culture media incubated with gas plasma-treated composite chips and added to cells thereafter could not replicate the effects, pointing to the potential that surface modifications elicited the findings. In conclusion, our data suggest that gas plasma treatment modifies composite material surfaces to a certain extent, leading to measurable but overall modest biological effects.
  • Item
    Argon Humidification Exacerbates Antimicrobial and Anti-MRSA kINPen Plasma Activity
    (Basel : MDPI, 2023) Clemen, Ramona; Singer, Debora; Skowski, Henry; Bekeschus, Sander
    Gas plasma is a medical technology with antimicrobial properties. Its main mode of action is oxidative damage via reactive species production. The clinical efficacy of gas plasma-reduced bacterial burden has been shown to be hampered in some cases. Since the reactive species profile produced by gas plasma jets, such as the kINPen used in this study, are thought to determine antimicrobial efficacy, we screened an array of feed gas settings in different types of bacteria. Antimicrobial analysis was performed by single-cell analysis using flow cytometry. We identified humidified feed gas to mediate significantly greater toxicity compared to dry argon and many other gas plasma conditions. The results were confirmed by inhibition zone analysis on gas-plasma-treated microbial lawns grown on agar plates. Our results may have vital implications for clinical wound management and potentially enhance antimicrobial efficacy of medical gas plasma therapy in patient treatment.
  • Item
    Gas Plasma Protein Oxidation Increases Immunogenicity and Human Antigen-Presenting Cell Maturation and Activation
    (Basel : MDPI, 2022) Clemen, Ramona; Arlt, Kevin; von Woedtke, Thomas; Bekeschus, Sander
    Protein vaccines rely on eliciting immune responses. Inflammation is a prerequisite for immune responses to control infection and cancer but is also associated with disease onset. Reactive oxygen species (ROSs) are central during inflammation and are capable of inducing non-enzymatic oxidative protein modifications (oxMods) associated with chronic disease, which alter the functionality or immunogenicity of proteins that are relevant in cancer immunotherapy. Specifically, antigen-presenting cells (APCs) take up and degrade extracellular native and oxidized proteins to induce adaptive immune responses. However, it is less clear how oxMods alter the protein’s immunogenicity, especially in inflammation-related short-lived reactive species. Gas plasma technology simultaneously generates a multitude of ROSs to modify protein antigens in a targeted and controlled manner to study the immunogenicity of oxMods. As model proteins relevant to chronic inflammation and cancer, we used gas plasma-treated insulin and CXCL8. We added those native or oxidized proteins to human THP-1 monocytes or primary monocyte-derived cells (moDCs). Both oxidized proteins caused concentration-independent maturation phenotype alterations in moDCs and THP-1 cells concerning surface marker expression and chemokine and cytokine secretion profiles. Interestingly, concentration-matched H2O2-treated proteins did not recapitulate the effects of gas plasma, suggesting sufficiently short diffusion distances for the short-lived reactive species to modify proteins. Our data provide evidence of dendric cell maturation and activation upon exposure to gas plasma- but not H2O2-modified model proteins. The biological consequences of these findings need to be elucidated in future inflammation and cancer disease models.