Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Distributed optimal control of a nonstandard system of phase field equations : dedicated to Prof. Dr. Ingo Müller on the occasion of his 75th birthday

2011, Colli, Pierluigi, Gilardi, Gianni, Podio-Guidugli, Paolo, Sprekels, Jürgen, Müller, Ingo

We investigate a distributed optimal control problem for a phase field model of Cahn-Hilliard type. The model describes two-species phase segregation on an atomic lattice under the presence of diffusion; it has been introduced recently in [4], on the basis of the theory developed in [15], and consists of a system of two highly nonlinearly coupled PDEs. For this reason, standard arguments of optimal control theory do not apply directly, although the control constraints and the cost functional are of standard type. We show that the problem admits a solution, and we derive the first-order necessary conditions of optimality.

Loading...
Thumbnail Image
Item

Optimal distributed control of a diffuse interface model of tumor growth

2016, Colli, Pierluigi, Gilardi, Gianni, Rocca, Elisabetta, Sprekels, Jürgen

In this paper, a distributed optimal control problem is studied for a diffuse interface model of tumor growth which was proposed by HawkinsDaruud et al. in [25]. The model consists of a CahnHilliard equation for the tumor cell fraction 'coupled to a reaction-diffusion equation for a function phi representing the nutrientrich extracellular water volume fraction. The distributed control u monitors as a right-hand side the equation for sigma and can be interpreted as a nutrient supply or a medication, while the cost function, which is of standard tracking type, is meant to keep the tumor cell fraction under control during the evolution. We show that the control-to-state operator is Fréchet differentiable between appropriate Banach spaces and derive the first-order necessary optimality conditions in terms of a variational inequality involving the adjoint state variables.

Loading...
Thumbnail Image
Item

Distributed optimal control of a nonstandard nonlocal phase field system

2016, Colli, Pierluigi, Gilardi, Gianni, Sprekels, Jürgen

We investigate a distributed optimal control problem for a nonlocal phase field model of viscous Cahn-Hilliard type. The model constitutes a nonlocal version of a model for two-species phase segregation on an atomic lattice under the presence of diffusion that has been studied in a series of papers by P. Podio-Guidugli and the present authors. The model consists of a highly nonlinear parabolic equation coupled to an ordinary differential equation. The latter equation contains both nonlocal and singular terms that render the analysis difficult. Standard arguments of optimal control theory do not apply directly, although the control constraints and the cost functional are of standard type. We show that the problem admits a solution, and we derive the first-order necessary conditions of optimality.