Search Results

Now showing 1 - 7 of 7
  • Item
    Surface modification of silicon nanowire based field effect transistors with stimuli responsive polymer brushes for biosensing applications
    (Basel : MDPI, 2020) Klinghammer, Stephanie; Rauch, Sebastian; Pregl, Sebastian; Uhlmann, Petra; Baraban, Larysa; Cuniberti, Gianaurelio
    We demonstrate the functionalization of silicon nanowire based field effect transistors (SiNW FETs) FETs with stimuli-responsive polymer brushes of poly(N-isopropylacrylamide) (PNIPAAM) and poly(acrylic acid) (PAA). Surface functionalization was confirmed by atomic force microscopy, contact angle measurements, and verified electrically using a silicon nanowire based field effect transistor sensor device. For thermo-responsive PNIPAAM, the physicochemical properties (i.e., a reversible phase transition, wettability) were induced by crossing the lower critical solution temperature (LCST) of about 32 C. Taking advantage of this property, osteosarcomic SaoS-2 cells were cultured on PNIPAAM-modified sensors at temperatures above the LCST, and completely detached by simply cooling. Next, the weak polyelectrolyte PAA, that is sensitive towards alteration of pH and ionic strength, was used to cover the silicon nanowire based device. Here, the increase of pH will cause deprotonation of the present carboxylic (COOH) groups along the chains into negatively charged COO- moieties that repel each other and cause swelling of the polymer. Our experimental results suggest that this functionalization enhances the pH sensitivity of the SiNW FETs. Specific receptor (bio-)molecules can be added to the polymer brushes by simple click chemistry so that functionality of the brush layer can be tuned optionally. We demonstrate at the proof-of concept-level that osteosarcomic Saos-2 cells can adhere to PNIPAAM-modified FETs, and cell signals could be recorded electrically. This study presents an applicable route for the modification of highly sensitive, versatile FETs that can be applied for detection of a variety of biological analytes. © 2020 by the authors.
  • Item
    Boron doping of SWCNTs as a way to enhance the thermoelectric properties of melt‐mixed polypropylene/SWCNT composites
    (Basel : MDPI, 2020) Krause, Beate; Bezugly, Viktor; Khavrus, Vyacheslav; Ye, Liu; Cuniberti, Gianaurelio; Pötschke, Petra
    Composites based on the matrix polymer polypropylene (PP) filled with single‐walled carbon nanotubes (SWCNTs) and boron‐doped SWCNTs (B‐SWCNTs) were prepared by melt‐mixing to analyze the influence of boron doping of SWCNTs on the thermoelectric properties of these nanocomposites. It was found that besides a significantly higher Seebeck coefficient of B‐SWCNT films and powder packages, the values for B‐SWCNT incorporated in PP were higher than those for SWCNTs. Due to the higher electrical conductivity and the higher Seebeck coefficients of B‐SWCNTs, the power factor (PF) and the figure of merit (ZT) were also higher for the PP/B‐SWCNT composites. The highest value achieved in this study was a Seebeck coefficient of 59.7 μV/K for PP with 0.5 wt% B‐SWCNT compared to 47.9 μV/K for SWCNTs at the same filling level. The highest PF was 0.78 μW/(m∙K2) for PP with 7.5 wt% B‐SWCNT. SWCNT macro‐ and microdispersions were found to be similar in both composite types, as was the very low electrical percolation threshold between 0.075 and 0.1 wt% SWCNT. At loadings between 0.5 and 2.0 wt%, B‐SWCNT‐based composites have one order of magnitude higher electrical conductivity than those based on SWCNT. The crystallization behavior of PP is more strongly influenced by B‐SWCNTs since their composites have higher crystallization temperatures than composites with SWCNTs at a comparable degree of crystallinity. Boron doping of SWCNTs is therefore a suitable way to improve the electrical and thermoelectric properties of composites. © 2020 by the authors.
  • Item
    Applications of nanogenerators for biomedical engineering and healthcare systems
    (Weinheim : Wiley, 2021) Wang, Wanli; Pang, Jinbo; Su, Jie; Li, Fujiang; Li, Qiang; Wang, Xiaoxiong; Wang, Jingang; Ibarlucea, Bergoi; Liu, Xiaoyan; Li, Yufen; Zhou, Weijia; Wang, Kai; Han, Qingfang; Liu, Lei; Zang, Ruohan; Rümmeli, Mark H.; Li, Yang; Liu, Hong; Hu, Han; Cuniberti, Gianaurelio
    The dream of human beings for long living has stimulated the rapid development of biomedical and healthcare equipment. However, conventional biomedical and healthcare devices have shortcomings such as short service life, large equipment size, and high potential safety hazards. Indeed, the power supply for conventional implantable device remains predominantly batteries. The emerging nanogenerators, which harvest micro/nanomechanical energy and thermal energy from human beings and convert into electrical energy, provide an ideal solution for self‐powering of biomedical devices. The combination of nanogenerators and biomedicine has been accelerating the development of self‐powered biomedical equipment. This article first introduces the operating principle of nanogenerators and then reviews the progress of nanogenerators in biomedical applications, including power supply, smart sensing, and effective treatment. Besides, the microbial disinfection and biodegradation performances of nanogenerators have been updated. Next, the protection devices have been discussed such as face mask with air filtering function together with real‐time monitoring of human health from the respiration and heat emission. Besides, the nanogenerator devices have been categorized by the types of mechanical energy from human beings, such as the body movement, tissue and organ activities, energy from chemical reactions, and gravitational potential energy. Eventually, the challenges and future opportunities in the applications of nanogenerators are delivered in the conclusive remarks. The combination of nanogenerator and biomedicine have been accelerating the development of self‐powered biomedical devices, which show a bright future in biomedicine and healthcare such as smart sensing, and therapy.
  • Item
    High-performance electronics and optoelectronics of monolayer tungsten diselenide full film from pre-seeding strategy
    (Weinheim : Wiley, 2021) Zhang, Shu; Pang, Jinbo; Cheng, Qilin; Yang, Feng; Chen, Yu; Liu, Yu; Li, Yufen; Gemming, Thomas; Liu, Xiaoyan; Ibarlucea, Bergoi; Yang, Jiali; Liu, Hong; Zhou, Weijia; Cuniberti, Gianaurelio; Rümmeli, Mark H.
    Tungsten diselenide (WSe2) possesses extraordinary electronic properties for applications in electronics, optoelectronics, and emerging exciton physics. The synthesis of monolayer WSe2 film is of topmost for device arrays and integrated circuits. The monolayer WSe2 film has yet been reported by thermal chemical vapor deposition (CVD) approach, and the nucleation mechanism remains unclear. Here, we report a pre-seeding strategy for finely regulating the nuclei density at an early stage and achieving a fully covered film after chemical vapor deposition growth. The underlying mechanism is heterogeneous nucleation from the pre-seeding tungsten oxide nanoparticles. At first, we optimized the precursor concentration for pre-seeding. Besides, we confirmed the superiority of the pre-seeding method, compared with three types of substrate pretreatments, including nontreatment, sonication in an organic solvent, and oxygen plasma. Eventually, the high-quality synthetic WSe2 monolayer film exhibits excellent device performance in field-effect transistors and photodetectors. We extracted thermodynamic activation energy from the nucleation and growth data. Our results may shed light on the wafer-scale production of homogeneous monolayer films of WSe2, other 2D materials, and their van der Waals heterostructures.
  • Item
    Understanding the catalyst-free transformation of amorphous carbon into graphene by current-induced annealing
    (London : Nature Publishing Group, 2013) Barreiro, Amelia; Börrnert, Felix; Avdoshenko, Stanislav M.; Rellinghaus, Bernd; Cuniberti, Gianaurelio; Rümmeli, Mark H.; Vandersypen, Lieven M.K.
    We shed light on the catalyst-free growth of graphene from amorphous carbon (a–C) by current-induced annealing by witnessing the mechanism both with in-situ transmission electron microscopy and with molecular dynamics simulations. Both in experiment and in simulation, we observe that small a–C clusters on top of a graphene substrate rearrange and crystallize into graphene patches. The process is aided by the high temperatures involved and by the van der Waals interactions with the substrate. Furthermore, in the presence of a–C, graphene can grow from the borders of holes and form a seamless graphene sheet, a novel finding that has not been reported before and that is reproduced by the simulations as well. These findings open up new avenues for bottom-up engineering of graphene-based devices.
  • Item
    Monitoring microbial metabolites using an inductively coupled resonance circuit
    (London : Nature Publishing Group, 2015) Karnaushenko, Daniil; Baraban, Larysa; Ye, Dan; Uguz, Ilke; Mendes, Rafael G.; Rümmeli, Mark H.; de Visser, J. Arjan G.M.; Schmidt, Oliver G.; Cuniberti, Gianaurelio; Makarov, Denys
    We present a new approach to monitor microbial population dynamics in emulsion droplets via changes in metabolite composition, using an inductively coupled LC resonance circuit. The signal measured by such resonance detector provides information on the magnetic field interaction with the bacterial culture, which is complementary to the information accessible by other detection means, based on electric field interaction, i.e. capacitive or resistive, as well as optical techniques. Several charge-related factors, including pH and ammonia concentrations, were identified as possible contributors to the characteristic of resonance detector profile. The setup enables probing the ionic byproducts of microbial metabolic activity at later stages of cell growth, where conventional optical detection methods have no discriminating power.
  • Item
    In-situ quasi-instantaneous e-beam driven catalyst-free formation of crystalline aluminum borate nanowires
    (London : Nature Publishing Group, 2016) Gonzalez-Martinez, Ignacio G.; Gemming, Thomas; Mendes, Rafael; Bachmatiuk, Alicja; Bezugly, Viktor; Kunstmann, Jens; Eckert, Jürgen; Cuniberti, Gianaurelio; Rümmeli, Mark H.
    The catalyst-assisted nucleation and growth mechanisms for many kinds of nanowires and nanotubes are pretty well understood. At times, though, 1D nanostructures form without a catalyst and the argued growth modes have inconsistencies. One such example is the catalyst-free growth of aluminium borate nanowires. Here we develop an in-situ catalyst-free room temperature growth route for aluminium nanowires using the electron beam in a transmission electron microscope. We provide strong experimental evidence that supports a formation process that can be viewed as a phase transition in which the generation of free-volume induced by the electron beam irradiation enhances the atomic mobility within the precursor material. The enhanced atomic mobility and specific features of the crystal structure of Al5BO9 drive the atomic rearrangement that results in the large scale formation of highly crystalline aluminium borate nanowires. The whole formation process can be completed within fractions of a second. Our developed growth mechanism might also be extended to describe the catalyst-free formation of other nanowires.