Search Results

Now showing 1 - 10 of 10
  • Item
    Hierarchical fibrous guiding cues at different scales influence linear neurite extension
    ([Amsterdam] : Elsevier, 2020) Omidinia-Anarkoli, Abdolrahman; Ephraim, John Wesley; Rimal, Rahul; De Laporte, Laura
    Surface topographies at micro- and nanoscales can influence different cellular behavior, such as their growth rate and directionality. While different techniques have been established to fabricate 2-dimensional flat substrates with nano- and microscale topographies, most of them are prone to high costs and long preparation times. The 2.5-dimensional fiber platform presented here provides knowledge on the effect of the combination of fiber alignment, inter-fiber distance (IFD), and fiber surface topography on contact guidance to direct neurite behavior from dorsal root ganglia (DRGs) or dissociated primary neurons. For the first time, the interplay of the micro-/nanoscale topography and IFD is studied to induce linear nerve growth, while controlling branching. The results demonstrate that grooved fibers promote a higher percentage of aligned neurite extension, compensating the adverse effect of increased IFD. Accordingly, maximum neurite extension from primary neurons is achieved on grooved fibers separated by an IFD of 30 μm, with a higher percentage of aligned neurons on grooved fibers at a large IFD compared to porous fibers with the smallest IFD of 10 µm. We further demonstrate that the neurite “decision-making” behavior on whether to cross a fiber or grow along it is not only dependent on the IFD but also on the fiber surface topography. In addition, axons growing in between the fibers seem to have a memory after leaving grooved fibers, resulting in higher linear growth and higher IFDs lead to more branching. Such information is of great importance for new material development for several tissue engineering applications. Statement of Significance: One of the key aspects of tissue engineering is controlling cell behavior using hierarchical structures. Compared to 2D surfaces, fibers are an important class of materials, which can emulate the native ECM architecture of tissues. Despite the importance of both fiber surface topography and alignment to direct growing neurons, the current state of the art did not yet study the synergy between both scales of guidance. To achieve this, we established a solvent assisted spinning process to combine these two crucial features and control neuron growth, alignment, and branching. Rational design of new platforms for various tissue engineering and drug discovery applications can benefit from such information as it allows for fabrication of functional materials, which selectively influence neurite behavior. © 2020
  • Item
    How Much Physical Guidance is Needed to Orient Growing Axons in 3D Hydrogels?
    (Weinheim : Wiley-VCH, 2020) Rose, Jonas C.; Gehlen, David B.; Omidinia-Anarkoli, Abdolrahman; Fölster, Maaike; Haraszti, Tamás; Jaekel, Esther E.; De Laporte, Laura
    Directing cells is essential to organize multi-cellular organisms that are built up from subunits executing specific tasks. This guidance requires a precisely controlled symphony of biochemical, mechanical, and structural signals. While many guiding mechanisms focus on 2D structural patterns or 3D biochemical gradients, injectable material platforms that elucidate how cellular processes are triggered by defined 3D physical guiding cues are still lacking but crucial for the repair of soft tissues. Herein, a recently developed anisotropic injectable hybrid hydrogel (Anisogel) contains rod-shaped microgels that orient in situ by a magnetic field and has propelled studying 3D cell guidance. Here, the Anisogel is used to investigate the dependence of axonal guidance on microgel dimensions, aspect ratio, and distance. While large microgels result in high material anisotropy, they significantly reduce neurite outgrowth and thus the guidance efficiency. Narrow and long microgels enable strong axonal guidance with maximal outgrowth including cell sensing over distances of tens of micrometers in 3D. Moreover, nerve cells decide to orient inside the Anisogel within the first three days, followed by strengthening of the alignment, which goes along with oriented fibronectin deposition. These findings demonstrate the potential of the Anisogel to tune structural and mechanical parameters for specific applications. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Digitally Fabricated and Naturally Augmented In Vitro Tissues
    (Weinheim : Wiley-VCH, 2020) Duarte Campos, Daniela F.; De Laporte, Laura
    Human in vitro tissues are extracorporeal 3D cultures of human cells embedded in biomaterials, commonly hydrogels, which recapitulate the heterogeneous, multiscale, and architectural environment of the human body. Contemporary strategies used in 3D tissue and organ engineering integrate the use of automated digital manufacturing methods, such as 3D printing, bioprinting, and biofabrication. Human tissues and organs, and their intra- and interphysiological interplay, are particularly intricate. For this reason, attentiveness is rising to intersect materials science, medicine, and biology with arts and informatics. This report presents advances in computational modeling of bioink polymerization and its compatibility with bioprinting, the use of digital design and fabrication in the development of fluidic culture devices, and the employment of generative algorithms for modeling the natural and biological augmentation of in vitro tissues. As a future direction, the use of serially linked in vitro tissues as human body-mimicking systems and their application in drug pharmacokinetics and metabolism, disease modeling, and diagnostics are discussed. © 2020 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH
  • Item
    Controlling Structure with Injectable Biomaterials to Better Mimic Tissue Heterogeneity and Anisotropy
    (Weinheim : Wiley-VCH, 2021) Babu, Susan; Albertino, Filippo; Omidinia-Anarkoli, Abdolrahman; De Laporte, Laura
    Tissue regeneration of sensitive tissues calls for injectable scaffolds, which are minimally invasive and offer minimal damage to the native tissues. However, most of these systems are inherently isotropic and do not mimic the complex hierarchically ordered nature of the native extracellular matrices. This review focuses on the different approaches developed in the past decade to bring in some form of anisotropy to the conventional injectable tissue regenerative matrices. These approaches include introduction of macroporosity, in vivo pattering to present biomolecules in a spatially and temporally controlled manner, availability of aligned domains by means of self-assembly or oriented injectable components, and in vivo bioprinting to obtain structures with features of high resolution that resembles native tissues. Toward the end of the review, different techniques to produce building blocks for the fabrication of heterogeneous injectable scaffolds are discussed. The advantages and shortcomings of each approach are discussed in detail with ideas to improve the functionality and versatility of the building blocks. © 2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH
  • Item
    Granular Cellulose Nanofibril Hydrogel Scaffolds for 3D Cell Cultivation
    (Weinheim : Wiley-VCH, 2020) Gehlen, David B.; Jürgens, Niklas; Omidinia-Anarkoli, Abdolrahman; Haraszti, Tamás; George, Julian; Walther, Andreas; Ye, Hua; De Laporte, Laura
    The replacement of diseased and damaged organs remains an challenge in modern medicine. However, through the use of tissue engineering techniques, it may soon be possible to (re)generate tissues and organs using artificial scaffolds. For example, hydrogel networks made from hydrophilic precursor solutions can replicate many properties found in the natural extracellular matrix (ECM) but often lack the dynamic nature of the ECM, as many covalently crosslinked hydrogels possess elastic and static networks with nanoscale pores hindering cell migration without being degradable. To overcome this, macroporous colloidal hydrogels can be prepared to facilitate cell infiltration. Here, an easy method is presented to fabricate granular cellulose nanofibril hydrogel (CNF) scaffolds as porous networks for 3D cell cultivation. CNF is an abundant natural and highly biocompatible material that supports cell adhesion. Granular CNF scaffolds are generated by pre-crosslinking CNF using calcium and subsequently pressing the gel through micrometer-sized nylon meshes. The granular solution is mixed with fibroblasts and crosslinked with cell culture medium. The obtained granular CNF scaffold is significantly softer and enables well-distributed fibroblast growth. This cost-effective material combined with this efficient and facile fabrication technique allows for 3D cell cultivation in an upscalable manner. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Predicting the orientation of magnetic microgel rods for soft anisotropic biomimetic hydrogels
    (Cambridge : RSC Publ., 2020) Rose, Jonas C.; Fölster, Maaike; Kivilip, Lukas; Gerardo-Nava, Jose L.; Jaekel, Esther E.; Gehlen, David B.; Rohlfs, Wilko; De Laporte, Laura
    Living multicellular organisms comprise a high degree of soft anisotropic tissues but the development of controlled artificial assembly processes to mimic them remains challenging. Therefore, injectable, polymeric, magneto-responsive microgel rods are fabricated to orient within a low magnetic field. The incorporated superparamagnetic nanoparticles induce local dipole moments, resulting in a total magnetic torque that endows microgels with different structural, mechanical, and biochemical properties. In this report, a predictive macroscopic model based on an ellipsoidal element dispersed in a Newtonian fluid is adjusted using experimental data, which enables the prediction of the orientation rate and the required magnetic field strength for various microgel design parameters and fluid viscosities. The ordered microgels are fixed by crosslinking of a surrounding hydrogel, and can be employed for a wide variety of applications where anisotropic composite hydrogels play a crucial role; for instance as adaptive materials or in biomedical applications, wherein the model predictions can reduce animal experiments. © 2019 The Royal Society of Chemistry.
  • Item
    Anisometric Microstructures to Determine Minimal Critical Physical Cues Required for Neurite Alignment
    (Weinheim : Wiley-VCH, 2021) Vedaraman, Sitara; Perez-Tirado, Amaury; Haraszti, Tamas; Gerardo-Nava, Jose; Nishiguchi, Akihiro; De Laporte, Laura
    In nerve regeneration, scaffolds play an important role in providing an artificial extracellular matrix with architectural, mechanical, and biochemical cues to bridge the site of injury. Directed nerve growth is a crucial aspect of nerve repair, often introduced by engineered scaffolds imparting linear tracks. The influence of physical cues, determined by well-defined architectures, has been mainly studied for implantable scaffolds and is usually limited to continuous guiding features. In this report, the potential of short anisometric microelements in inducing aligned neurite extension, their dimensions, and the role of vertical and horizontal distances between them, is investigated. This provides crucial information to create efficient injectable 3D materials with discontinuous, in situ magnetically oriented microstructures, like the Anisogel. By designing and fabricating periodic, anisometric, discreet guidance cues in a high-throughput 2D in vitro platform using two-photon lithography techniques, the authors are able to decipher the minimal guidance cues required for directed nerve growth along the major axis of the microelements. These features determine whether axons grow unidirectionally or cross paths via the open spaces between the elements, which is vital for the design of injectable Anisogels for enhanced nerve repair. © 2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH
  • Item
    Cellulose Nanofibril Hydrogel Promotes Hepatic Differentiation of Human Liver Organoids
    (Weinheim : Wiley-VCH, 2020) Krüger, Melanie; Oosterhoff, Loes A.; van Wolferen, Monique E.; Schiele, Simon A.; Walther, Andreas; Geijsen, Niels; De Laporte, Laura; van der Laan, Luc J.W.; Kock, Linda M.; Spee, Bart
    To replicate functional liver tissue in vitro for drug testing or transplantation, 3D tissue engineering requires representative cell models as well as scaffolds that not only promote tissue production but also are applicable in a clinical setting. Recently, adult liver-derived liver organoids are found to be of much interest due to their genetic stability, expansion potential, and ability to differentiate toward a hepatocyte-like fate. The current standard for culturing these organoids is a basement membrane hydrogel like Matrigel (MG), which is derived from murine tumor material and apart from its variability and high costs, possesses an undefined composition and is therefore not clinically applicable. Here, a cellulose nanofibril (CNF) hydrogel is investigated with regard to its potential to serve as an alternative clinical grade scaffold to differentiate liver organoids. The results show that its mechanical properties are suitable for differentiation with overall, either equal or improved, functionality of the hepatocyte-like cells compared to MG. Therefore, and because of its defined and tunable chemical definition, the CNF hydrogel presents a viable alternative to MG for liver tissue engineering with the option for clinical use. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Bicyclic RGD peptides enhance nerve growth in synthetic PEG-based Anisogels
    (Cambridge : RSC, 2021) Vedaraman, Sitara; Bernhagen, Dominik; Haraszti, Tamas; Licht, Christopher; Castro Nava, Arturo; Omidinia Anarkoli, Abdolrahman; Timmerman, Peter; De Laporte, Laura
    Nerve regeneration scaffolds often consist of soft hydrogels modified with extracellular matrix (ECM) proteins or fragments, as well as linear and cyclic peptides. One of the commonly used integrin-mediated cell adhesive peptide sequences is Arg-Gly-Asp (RGD). Despite its straightforward coupling mechanisms to artificial extracellular matrix (aECM) constructs, linear RGD peptides suffer from low stability towards degradation and lack integrin selectivity. Cyclization of RGD improves the affinity towards integrin subtypes but lacks selectivity. In this study, a new class of short bicyclic peptides with RGD in a cyclic loop and 'random screened' tri-amino acid peptide sequences in the second loop is investigated as a biochemical cue for cell growth inside three-dimensional (3D) synthetic poly(ethylene glycol) (PEG)-based Anisogels. These peptides impart high integrin affinity and selectivity towards either αvβ3 or α5β1 integrin subunits. Enzymatic conjugation of such bicyclic peptides to the PEG backbone enables the formulation of an aECM hydrogel that supports nerve growth. Furthermore, different proteolytic cleavable moieties are incorporated and compared to promote cell migration and proliferation, resulting in enhanced cell growth with different degradable peptide crosslinkers. Mouse fibroblasts and primary nerve cells from embryonic chick dorsal root ganglions (DRGs) show superior growth in bicyclic RGD peptide conjugated gels selective towards αvβ3 or α5β1, compared to monocyclic or linear RGD peptides, with a slight preference to αvβ3 selective bicyclic peptides in the case of nerve growth. Synthetic Anisogels, modified with bicyclic RGD peptides and containing short aligned, magneto-responsive fibers, show oriented DRG outgrowth parallel to the fibers. This report shows the potential of PEG hydrogels coupled with bicyclic RGD peptides as an aECM model and paves the way for a new class of integrin selective biomolecules for cell growth and nerve regeneration.
  • Item
    Unravelling colloid filter cake motions in membrane cleaning procedures
    (London : Nature Publishing Group, 2020) Lüken, Arne; Linkhorst, John; Fröhlingsdorf, Robin; Lippert, Laura; Rommel, Dirk; De Laporte, Laura; Wessling, Matthias
    The filtration performance of soft colloid suspensions suffers from the agglomeration of the colloids on the membrane surface as filter cakes.Backflushing of fluid through the membrane and cross-flow flushing across the membrane are widely used methods to temporally remove the filter cake and restore the flux through the membrane. However, the phenomena occurring during the recovery of the filtration performance are not yet fully described. In this study, we filtrate poly(N-isopropylacrylamide) microgels and analyze the filter cake in terms of its composition and its dynamic mobility during removal using on-line laser scanning confocal microscopy. First, we observe uniform cake build-up that displays highly ordered and amorphous regions in the cake layer. Second, backflushing removes the cake in coherent pieces and their sizes depend on the previous cake build-up. And third, cross-flow flushing along the cake induces a pattern of longitudinal ridges on the cake surface, which depends on the cross-flow velocity and accelerates cake removal. These observations give insight into soft colloid filter cake arrangement and reveal the cake’s unique behaviour exposed to shear-stress. © 2020, The Author(s).