Search Results

Now showing 1 - 4 of 4
  • Item
    The enhanced Sanov theorem and propagation of chaos
    (Amsterdam [u.a.] : Elsevier, 2017) Deuschel, Jean-Dominique; Friz, Peter K.; Maurelli, Mario; Slowik, Martin
    We establish a Sanov type large deviation principle for an ensemble of interacting Brownian rough paths. As application a large deviations for the (-layer, enhanced) empirical measure of weakly interacting diffusions is obtained. This in turn implies a propagation of chaos result in a space of rough paths and allows for a robust analysis of the particle system and its McKean–Vlasov type limit, as shown in two corollaries.
  • Item
    Pathwise McKean--Vlasov theory with additive noise
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Coghi, Michele; Deuschel, Jean-Dominique; Friz, Peter; Maurelli, Mario
    We take a pathwise approach to classical McKean-Vlasov stochastic differential equations with additive noise, as e.g. exposed in Sznitmann [34]. Our study was prompted by some concrete problems in battery modelling [19], and also by recent progress on rough-pathwise McKean-Vlasov theory, notably Cass--Lyons [9], and then Bailleul, Catellier and Delarue [4]. Such a ``pathwise McKean-Vlasov theory'' can be traced back to Tanaka [36]. This paper can be seen as an attempt to advertize the ideas, power and simplicity of the pathwise appproach, not so easily extracted from [4, 9, 36]. As novel applications we discuss mean field convergence without a priori independence and exchangeability assumption; common noise and reflecting boundaries. Last not least, we generalize Dawson--Gärtner large deviations to a non-Brownian noise setting.
  • Item
    Additive functionals as rough paths
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Deuschel, Jean-Dominique; Orenshtein, Tal; Perkowski, Nicolas
    We consider additive functionals of stationary Markov processes and show that under Kipnis--Varadhan type conditions they converge in rough path topology to a Stratonovich Brownian motion, with a correction to the Lévy area that can be described in terms of the asymmetry (non-reversibility) of the underlying Markov process. We apply this abstract result to three model problems: First we study random walks with random conductances under the annealed law. If we consider the Itô rough path, then we see a correction to the iterated integrals even though the underlying Markov process is reversible. If we consider the Stratonovich rough path, then there is no correction. The second example is a non-reversible Ornstein-Uhlenbeck process, while the last example is a diffusion in a periodic environment. As a technical step we prove an estimate for the p-variation of stochastic integrals with respect to martingales that can be viewed as an extension of the rough path Burkholder-Davis-Gundy inequality for local martingale rough paths of [FV08], [CF19] and [FZ18] to the case where only the integrator is a local martingale.
  • Item
    Aging for the stationary Kardar--Parisi--Zhang equation and related models
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Deuschel, Jean-Dominique; Orenshtein, Tal; Moreno Flores, Gregorio R.
    We study the aging property for stationary models in the KPZ universality class. In particular, we show aging for the stationary KPZ fixed point, the Cole-Hopf solution to the stationary KPZ equation, the height function of the stationary TASEP, last-passage percolation with boundary conditions and stationary directed polymers in the intermediate disorder regime. All of these models are shown to display a universal aging behavior characterized by the rate of decay of their correlations. As a comparison, we show aging for models in the Edwards-Wilkinson universality class where a different decay exponent is obtained. A key ingredient to our proofs is a characteristic of space-time stationarity - covariance-to-variance reduction - which allows to deduce the asymptotic behavior of the correlations of two space-time points by the one of the variances at one point. We formulate several open problems.