Search Results

Now showing 1 - 3 of 3
  • Item
    Comment on 'Oxygen vacancy-induced magnetic moment in edge-sharing CuO2 chains of Li2CuO2'
    (Bristol : IOP Publishing, 2018) Kuzian, R.O.; Klingeler, R.; Lorenz, W.E.A.; Wizent, N.; Nishimoto, S.; Nitzsche, U.; Rosner, H.; Milosavljevic, D.; Hozoi, L.; Yadav, R.; Richter, J.; Hauser, A.; Geck, J.; Hayn, R.; Yushankhai, V.; Siurakshina, L.; Monney, C.; Schmitt, T.; Schmitt, T.; Roth, G.; Ito, T.; Yamaguchi, H.; Matsuda, M.; Johnston, S.; Málek, J.; Drechsler, S.-L.
    In a recent work devoted to the magnetism of Li2CuO2, Shu et al (2017 New J. Phys. 19, 023026) have proposed a 'simplified' unfrustrated microscopic model that differs considerably from the models refined through decades of prior work. We show that the proposed model is at odds with known experimental data, including the reported magnetic susceptibility χ(T) data up to 550 K. Using an 8th order high-temperature expansion for χ(T), we show that the experimental data for Li2CuO2 are consistent with the prior model derived from inelastic neutron scattering studies. We also establish the T-range of validity for a Curie–Weiss law for the real frustrated magnetic system. We argue that the knowledge of the long-range ordered magnetic structure for T < T N and of χ(T) in a restricted T-range provides insufficient information to extract all of the relevant couplings in frustrated magnets; the saturation field and INS data must also be used to determine several exchange couplings, including the weak but decisive frustrating antiferromagnetic interchain couplings.
  • Item
    Signatures of a magnetic field-induced unconventional nematic liquid in the frustrated and anisotropic spin-chain cuprate LiCuSbO4
    (London : Nature Publishing Group, 2017) Grafe, H.-J.; Nishimoto, S.; Iakovleva, M.; Vavilova, E.; Spillecke, L.; Alfonsov, A.; Sturza, M.-I.; Wurmehl, S.; Nojiri, H.; Rosner, H.; Richter, J.; Rößler, U.K.; Drechsler, S.-L.; Kataev, V.; Büchner, B.
    Modern theories of quantum magnetism predict exotic multipolar states in weakly interacting strongly frustrated spin-1/2 Heisenberg chains with ferromagnetic nearest neighbor (NN) inchain exchange in high magnetic fields. Experimentally these states remained elusive so far. Here we report strong indications of a magnetic field-induced nematic liquid arising above a field of ~13 T in the edge-sharing chain cuprate LiSbCuO4 ≡ LiCuSbO4. This interpretation is based on the observation of a field induced spin-gap in the measurements of the 7Li NMR spin relaxation rate T1−1 as well as a contrasting field-dependent power-law behavior of T1−1 vs. T and is further supported by static magnetization and ESR data. An underlying theoretical microscopic approach favoring a nematic scenario is based essentially on the NN XYZ exchange anisotropy within a model for frustrated spin-1/2 chains and is investigated by the DMRG technique. The employed exchange parameters are justified qualitatively by electronic structure calculations for LiCuSbO4.
  • Item
    Selective mass enhancement close to the quantum critical point in BaFe2(As1−x P x )2
    (London : Nature Publishing Group, 2017) Grinenko, V.; Iida, K.; Kurth, F.; Efremov, D.V.; Drechsler, S.-L.; Cherniavskii, I.; Morozov, I.; Hänisch, J.; Förster, T.; Tarantini, C.; Jaroszynski, J.; Maiorov, B.; Jaime, M.; Yamamoto, A.; Nakamura, I.; Fujimoto, R.; Hatano, T.; Ikuta, H.; Hühne, R.
    A quantum critical point (QCP) is currently being conjectured for the BaFe2(As1−x P x )2 system at the critical value x c  ≈ 0.3. In the proximity of a QCP, all thermodynamic and transport properties are expected to scale with a single characteristic energy, given by the quantum fluctuations. Such a universal behavior has not, however, been found in the superconducting upper critical field Hc2. Here we report Hc2 data for epitaxial thin films extracted from the electrical resistance measured in very high magnetic fields up to 67 Tesla. Using a multi-band analysis we find that Hc2 is sensitive to the QCP, implying a significant charge carrier effective mass enhancement at the doping-induced QCP that is essentially band-dependent. Our results point to two qualitatively different groups of electrons in BaFe2(As1−x P x )2. The first one (possibly associated to hot spots or whole Fermi sheets) has a strong mass enhancement at the QCP, and the second one is insensitive to the QCP. The observed duality could also be present in many other quantum critical systems.