Search Results

Now showing 1 - 3 of 3
  • Item
    Inexact tensor methods and their application to stochastic convex optimization
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Agafonov, Artem; Kamzolov, Dmitry; Dvurechensky, Pavel; Gasnikov, Alexander
    We propose a general non-accelerated tensor method under inexact information on higher- order derivatives, analyze its convergence rate, and provide sufficient conditions for this method to have similar complexity as the exact tensor method. As a corollary, we propose the first stochastic tensor method for convex optimization and obtain sufficient mini-batch sizes for each derivative.
  • Item
    Tensor methods for strongly convex strongly concave saddle point problems and strongly monotone variational inequalities
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Ostroukhov, Petr; Kamalov, Rinat; Dvurechensky, Pavel; Gasnikov, Alexander
    In this paper we propose three tensor methods for strongly-convex-strongly-concave saddle point problems (SPP). The first method is based on the assumption of higher-order smoothness (the derivative of the order higher than 2 is Lipschitz-continuous) and achieves linear convergence rate. Under additional assumptions of first and second order smoothness of the objective we connect the first method with a locally superlinear converging algorithm in the literature and develop a second method with global convergence and local superlinear convergence. The third method is a modified version of the second method, but with the focus on making the gradient of the objective small. Since we treat SPP as a particular case of variational inequalities, we also propose two methods for strongly monotone variational inequalities with the same complexity as the described above.
  • Item
    Near-optimal tensor methods for minimizing gradient norm
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Dvurechensky, Pavel; Gasnikov, Alexander; Ostroukhov, Petr; Uribe, A. Cesar; Ivanova, Anastasiya
    Motivated by convex problems with linear constraints and, in particular, by entropy-regularized optimal transport, we consider the problem of finding approximate stationary points, i.e. points with the norm of the objective gradient less than small error, of convex functions with Lipschitz p-th order derivatives. Lower complexity bounds for this problem were recently proposed in [Grapiglia and Nesterov, arXiv:1907.07053]. However, the methods presented in the same paper do not have optimal complexity bounds. We propose two optimal up to logarithmic factors methods with complexity bounds with respect to the initial objective residual and the distance between the starting point and solution respectively