Search Results

Now showing 1 - 3 of 3
  • Item
    Production of porous β-Type Ti–40Nb alloy for biomedical applications: Comparison of selective laser melting and hot pressing
    (Basel : MDPI, 2013) Zhuravleva, Ksenia; Bönisch, Matthias; Prashanth, Konda Gokuldoss; Hempel, Ute; Helth, Arne; Gemming, Thomas; Calin, Mariana; Scudino, Sergio; Schultz, Ludwig; Eckert, Jürgen; Gebert, Annett
    We used selective laser melting (SLM) and hot pressing of mechanically-alloyed β-type Ti–40Nb powder to fabricate macroporous bulk specimens (solid cylinders). The total porosity, compressive strength, and compressive elastic modulus of the SLM-fabricated material were determined as 17% ± 1%, 968 ± 8 MPa, and 33 ± 2 GPa, respectively. The alloy’s elastic modulus is comparable to that of healthy cancellous bone. The comparable results for the hot-pressed material were 3% ± 2%, 1400 ± 19 MPa, and 77 ± 3 GPa. This difference in mechanical properties results from different porosity and phase composition of the two alloys. Both SLM-fabricated and hot-pressed cylinders demonstrated good in vitro biocompatibility. The presented results suggest that the SLM-fabricated alloy may be preferable to the hot-pressed alloy for biomedical applications, such as the manufacture of load-bearing metallic components for total joint replacements.
  • Item
    Ti/Al multi-layered sheets: Differential speed rolling (Part B)
    (Basel : MDPI, 2016) Romberg, Jan; Freudenberger, Jens; Watanabe, Hiroyuki; Scharnweber, Juliane; Eschke, Andy; Kühn, Uta; Klauß, Hansjörg; Oertel, Carl-Georg; Skrotzki, Werner; Eckert, Jürgen; Schultz, Ludwig
    Differential speed rolling has been applied to multi-layered Ti/Al composite sheets, obtained from accumulative roll bonding with intermediate heat treatments being applied. In comparison to conventional rolling, differential speed rolling is more efficient in strengthening the composite due to the more pronounced grain refinement. Severe plastic deformation by means of rolling becomes feasible if the evolution of common rolling textures in the Ti layers is retarded. In this condition, a maximum strength level of the composites is achieved, i.e., an ultimate tensile strength of 464 MPa, while the strain to failure amounts to 6.8%. The deformation has been observed for multi-layered composites. In combination with the analysis of the microstructure, this has been correlated to the mechanical properties.
  • Item
    Ti/Al multi-layered sheets: Accumulative roll bonding (Part A)
    (Basel : MDPI, 2016) Romberg, Jan; Freudenberger, Jens; Bauder, Hansjörg; Plattner, Georg; Krug, Hans; Holländer, Frank; Scharnweber, Juliane; Eschke, Andy; Kühn, Uta; Klauß, Hansjörg; Oertel, Carl-Georg; Skrotzki, Werner; Eckert, Jürgen; Schultz, Ludwig
    Co-deformation of Al and Ti by accumulative roll bonding (ARB) with intermediate heat treatments is utilized to prepare multi-layered Ti/Al sheets. These sheets show a high specific strength due to the activation of various hardening mechanisms imposed during deformation, such as: hardening by grain refinement, work hardening and phase boundary hardening. The latter is even enhanced by the confinement of the layers during deformation. The evolution of the microstructure with a special focus on grain refinement and structural integrity is traced, and the correlation to the mechanical properties is shown.