Search Results

Now showing 1 - 10 of 14
  • Item
    Near-field dynamics of broad area diode laser at very high pump levels
    (New York, NY : American Inst. of Physics, 2011) Hempel, M.; Tomm, J.W.; Baeumler, M.; Konstanzer, H.; Mukherjee, J.; Elsaesser, T.
    Near-field properties of the emission of broad area semiconductor diode lasers under extremely high pumping of up to ∼50 times the threshold are investigated. A transition from a gain to thermally-induced index guiding is shown under operation with single pulses of 300 ns duration. At highest output powers, catastrophic optical damage is observed which is studied in conjunction with the evolution of time-averaged filamentary near-field properties. Dynamics of the process is resolved on a picosecond time scale.
  • Item
    Coherent motion of low frequency vibrations in ultrafast excited state proton transfer
    (Routledge : Taylor and Francis Inc., 1999) Pfeiffer, M.; Chudoba, C.; Lau, A.; Lenz, K.; Elsaesser, T.
    Photoexcitation of internal proton transfer in the tinuvin molecule causes the excitation of some low frequency vibrational modes which oscillate with high amplitudes in a coherent manner over 700 fs. Such effect is observed for the first time applying two color pump/probe measurement with 25 fs pulses. Based on resonance Raman spectra a normal coordinate analysis of the modes is performed. It is shown that the nuclear movement given by the normal vibration of one of the modes serves to open up a barrierfree proton transfer path.
  • Item
    Femtosecond X-ray diffraction from nanolayered oxides
    (Amsterdam : Elsevier, 2010) Von Korff Schmising, C.; Harpoeth, A.; Zhavoronkov, N.; Woerner, M.; Elsaesser, T.; Bargheer, M.; Schmidbauer, M.; Vrejoiu, I.; Hesse, D.; Alexe, M.
    Femtosecond X-ray scattering offers the opportunity to investigate reversible lattice dynamics with unprecedented accuracy. We show in a prototype experiment how strain propagation modifies the functionality of a ferroelectric system on its intrinsic time scale.
  • Item
    Ultrafast two-dimensional terahertz spectroscopy of elementary excitations in solids
    (Bristol : IOP, 2013) Woerner, M.; Kuehn, W.; Bowlan, P.; Reimann, K.; Elsaesser, T.
    Recent experimental progress has allowed for the implementation of nonlinear two-dimensional (2D) terahertz (THz) spectroscopy in the ultrafast time domain. We discuss the principles of this technique based on multiple phase-locked electric field transients interacting in a collinear geometry with a solid and the phase-resolved detection of the THz fields after interaction with the sample. To illustrate the potential of this new method, 2D correlation spectra of coupled intersubband-longitudinal optical phonon excitations in a double quantum well system and a study of ultrafast carrier dynamics in graphene are presented.
  • Item
    Ultrafast structural and vibrational dynamics of the hydration shell around DNA
    (Les Ulis : EDP Sciences, 2013) Elsaesser, T.; Szyc, LŁ.; Yang, M.
    Two-dimensional infrared spectroscopy in the frequency range of OH- and NH stretch excitations serves for a direct mapping of hydration dynamics around DNA. A moderate slowing down of structural dynamics and resonant OH stretch energy transfer is observed in the DNA water shell compared to bulk water.
  • Item
    Ultrafast inter-ionic charge transfer of transition-metal complexes mapped by femtosecond x-ray powder diffraction
    (Les Ulis : EDP Sciences, 2013) Zamponi, F.; Freyer, B.; Juvé, V.; Stingl, J.; Woerner, M.; Chergui, M.; Elsaesser, T.
    Transient electron density maps are derived from x-ray diffraction patterns of photoexcited [Fe(bpy)3]2+(PF6 -)2 powder. Upon photoexcitation, the 5T 2 quintet state reveals a charge transfer from the PF 6- ions and from the Fe atoms to neighboring bpy units. The charge transfer from the Fe points to a partial and weak charge-transfer character of this state.
  • Item
    Femtosecond x-ray diffraction using the rotating crystal method
    (Les Ulis : EDP Sciences, 2013) Freyer, B.; Stingl, J.; Zamponi, F.; Woerner, M.; Elsaesser, T.
    We demonstrate the rotating-crystal method in femtosecond x-ray diffraction. Structural dynamics of a photoexcited bismuth crystal is mapped in a pump-probe scheme by measuring intensity changes of many Bragg reflections simultaneously.
  • Item
    Ultrafast two-dimensional THz spectroscopy of graphene
    (Les Ulis : EDP Sciences, 2013) Bowlan, P.; Martinez Moreno, E.; Reimann, K.; Woerner, M.; Elsaesser, T.
    With two-dimensional THz spectroscopy the dynamics of low-energy carriers in graphene is determined. Both intra- and interband absorption contribute to the observed ultrafast pump-probe signals.
  • Item
    Ultrafast charge relocation in an ionic crystal probed by femtosecond x-ray powder diffraction
    (Les Ulis : EDP Sciences, 2013) Woerner, M.; Zamponi, F.; Rothhardt, P.; Stingl, J.; Elsaesser, T.
    Transient electron density maps of potassium dihydrogen phosphate(KH 2PO4, KDP) are derived from femtosecond x-ray powder diffraction patterns. Upon photoexcitation, the low-frequency TO soft mode is elongated impulsively and modulates the electronic charge distribution on the length scale of interatomic distances, much larger than the vibrational amplitude of the nuclear motion. The results demonstrate a charge transfer from the volumes around the P-atoms to those containing the O - H·· ·O units and a quadrupolar distortion of the K+ charge distribution. This behavior reflects the interplay of nuclear motions and electric polarizations in the ionic crystal lattice.
  • Item
    Ultrafast IR pump-probe and 2D-IR photon echo spectroscopy of adenosine-thymidine base pairs
    (Les Ulis : EDP Sciences, 2013) Greve, C.; Preketes, N.K.; Costard, R.; Koeppe, B.; Fidder, H.; Nibbering, E.T.J.; Temps, F.; Mukamel, S.; Elsaesser, T.
    We characterize diagonal and off-diagonal anharmonicities of N-H stretching vibrations in adenosine and thymidine monomers and in A•T-base pairs in chloroform solution, showing the important role of coupling between vibrationally excited N-H stretching states.