Search Results

Now showing 1 - 2 of 2
  • Item
    Successful optimization of reconstruction parameters in structured illumination microscopy
    (Amsterdam [u.a.] : Elsevier, 2019) Karras, Christian; Smedh, Maria; Förster, Ronny; Deschout, Hendrik; Fernandez-Rodriguez, Julia; Heintzmann, Rainer
    The impact of the different reconstruction parameters in super-resolution structured illumination microscopy (SIM) on image artifacts is carefully analyzed. These parameters comprise the Wiener filter parameter, an apodization function, zero-frequency suppression and modifications of the optical transfer function. A detailed investigation of the reconstructed image spectrum is concluded to be suitable for identifying artifacts. For this purpose, two samples, an artificial test slide and a more realistic biological system, were used to characterize the artifact classes and their correlation with the image spectra as well as the reconstruction parameters. In addition, a guideline for efficient parameter optimization is suggested and the implementation of the parameters in selected up-to-date processing packages (proprietary and open-source) is depicted. © 2018 The Authors
  • Item
    Three-dimensional spatiotemporal tracking of nano-objects diffusing in water-filled optofluidic microstructured fiber
    (Berlin : de Gruyter, 2020) Jiang, Shiqi; Förster, Ronny; Plidschun, Malte; Kobelke, Jens; Ando, Ron Fatobene; Schmidt, Markus A.
    Three-dimensional (3D) tracking of nano-objects represents a novel pathway for understanding dynamic nanoscale processes within bioanalytics and life science. Here we demonstrate 3D tracking of diffusing 100 nm gold nanosphere within a water-filled optofluidic fiber via elastic light scattering-based position retrieval. Specifically, the correlation between intensity and position inside a region of a fiber-integrated microchannel has been used to decode the axial position from the scattered intensity, while image processing-based tracking was used in the image plane. The 3D trajectory of a diffusing gold nanosphere has been experimentally determined, while the determined diameter analysis matches expectations. Beside key advantages such as homogenous light-line illumination, low-background scattering, long observation time, large number of frames, high temporal and spatial resolution and compatibility with standard microscope, the particular properties of operating with water defines a new bioanalytical platform that is highly relevant for medical and life science applications. © 2020 Shiqi Jiang et al., published by De Gruyter. 2020.