Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Phase- and intensity-resolved measurements of above threshold ionization by few-cycle pulses

2018-06-11, Kübel, M., Arbeiter, M., Burger, C., Kling, Nora G., Pischke, T., Moshammer, R., Fennel, T., Kling, M.F., Bergues, B.

We investigate the carrier-envelope phase (CEP) and intensity dependence of the longitudinal momentum distribution of photoelectrons resulting from above threshold ionization of argon by few-cycle laser pulses. The intensity of the pulses with a center wavelength of 750 nm is varied in a range between 0.7 × 1014 and . Our measurements reveal a prominent maximum in the CEP-dependent asymmetry at photoelectron energies of 2 U P (U P being the ponderomotive potential), that is persistent over the entire intensity range. Further local maxima are observed around 0.3 and 0.8 U P. The experimental results are in good agreement with theoretical results obtained by solving the three-dimensional time-dependent Schrödinger equation. We show that for few-cycle pulses, the amplitude of the CEP-dependent asymmetry provides a reliable measure for the peak intensity on target. Moreover, the measured asymmetry amplitude exhibits an intensity-dependent interference structure at low photoelectron energy, which could be used to benchmark model potentials for complex atoms.

Loading...
Thumbnail Image
Item

Carrier-envelope phase-tagged imaging of the controlled electron acceleration from SiO 2 nanospheres in intense few-cycle laser fields

2012, Zherebtsov, S., Süßmann, F., Peltz, C., Plenge, J., Betsch, K.J., Znakovskaya, I., Alnaser, A.S., Johnson, N.G., Kübel, M., Horn, A., Mondes, V., Graf, C., Trushin, S.A., Azzeer, A., Vrakking, M.J.J., Paulus, G.G., Krausz, F., Rühl, E., Fennel, T., Kling, M.F.

Waveform-controlled light fields offer the possibility of manipulating ultrafast electronic processes on sub-cycle timescales. The optical lightwave control of the collective electron motion in nanostructured materials is key to the design of electronic devices operating at up to petahertz frequencies. We have studied the directional control of the electron emission from 95 nm diameter SiO 2 nanoparticles in few-cycle laser fields with a well-defined waveform. Projections of the three-dimensional (3D) electron momentum distributions were obtained via single-shot velocity-map imaging (VMI), where phase tagging allowed retrieving the laser waveform for each laser shot. The application of this technique allowed us to efficiently suppress background contributions in the data and to obtain very accurate information on the amplitude and phase of the waveform-dependent electron emission. The experimental data that are obtained for 4 fs pulses centered at 720 nm at different intensities in the range (1-4)×10 13Wcm -2 are compared to quasi-classical mean-field Monte-Carlo simulations. The model calculations identify electron backscattering from the nanoparticle surface in highly dynamical localized fields as the main process responsible for the energetic electron emission from the nanoparticles. The local field sensitivity of the electron emission observed in our studies can serve as a foundation for future research on propagation effects for larger particles and field-induced material changes at higher intensities.

Loading...
Thumbnail Image
Item

Attosecond streaking metrology with isolated nanotargets

2018-01-05, Liu, Q., Seiffert, L., Trabattoni, A., Castrovilli, M.C., Galli, M., Rupp, P., Frassetto, F., Poletto, L., Nisoli, M., Rühl, E., Krausz, F., Fennel, T., Zherebtsov, S., Calegari, F., Kling, M.F.

The development of attosecond metrology has enabled time-resolved studies on atoms, molecules, and (nanostructured) solids. Despite a wealth of theoretical work, attosecond experiments on isolated nanotargets, such as nanoparticles, clusters, and droplets have been lacking. Only recently, attosecond streaking metrology could be extended to isolated silica nanospheres, enabling real-time measurements of the inelastic scattering time in dielectric materials. Here, we revisit these experiments and describe the single-shot analysis of velocity-map images, which permits to evaluate the recorded number of electrons. Modeling of the recorded electron histograms allows deriving the irradiated nanoparticle statistics. Theoretically, we analyze the influence of the nanoparticle size on the field-induced delay, which is one of the terms contributing to the measured streaking delay. The obtained new insight into attosecond streaking experiments on nanoparticles is expected to guide wider implementation of the approach on other types of nanoparticles, clusters, and droplets.

Loading...
Thumbnail Image
Item

Nanoplasmonic electron acceleration in silver clusters studied by angular-resolved electron spectroscopy

2012, Passig, J., Irsig, R., Truong, N.X., Fennel, T., Tiggesbäumker, J., Meiwes-Broer, K.H.

The nanoplasmonic field enhancement effects in the energetic electron emission from few-nm-sized silver clusters exposed to intense femtosecond dual pulses are investigated by high-resolution double differential electron spectroscopy. For moderate laser intensities of 10 14Wcm -2, the delaydependent and angular-resolved electron spectra show laser-aligned emission of electrons up to keV kinetic energies, exceeding the ponderomotive potential by two orders of magnitude. The importance of the nanoplasmonic field enhancement due to resonant Mie-plasmon excitation observed for optimal pulse delays is investigated by a direct comparison with molecular dynamics results. The excellent agreement of the key signatures in the delay-dependent and angular-resolved spectra with simulation results allows for a quantitative analysis of the laser and plasmonic contributions to the acceleration process. The extracted field enhancement at resonance verifies the dominance of surfaceplasmon-assisted re-scattering.

Loading...
Thumbnail Image
Item

Observation of correlated electronic decay in expanding clusters triggered by near-infrared fields

2015, Schütte, B., Arbeiter, M., Fennel, T., Jabbari, G., Kuleff, A.I., Vrakking, M.J.J., Rouzée, A.

When an excited atom is embedded into an environment, novel relaxation pathways can emerge that are absent for isolated atoms. A well-known example is interatomic Coulombic decay, where an excited atom relaxes by transferring its excess energy to another atom in the environment, leading to its ionization. Such processes have been observed in clusters ionized by extreme-ultraviolet and X-ray lasers. Here, we report on a correlated electronic decay process that occurs following nanoplasma formation and Rydberg atom generation in the ionization of clusters by intense, non-resonant infrared laser fields. Relaxation of the Rydberg states and transfer of the available electronic energy to adjacent electrons in Rydberg states or quasifree electrons in the expanding nanoplasma leaves a distinct signature in the electron kinetic energy spectrum. These so far unobserved electron-correlation-driven energy transfer processes may play a significant role in the response of any nano-scale system to intense laser light.

Loading...
Thumbnail Image
Item

Diffraction imaging of light induced dynamics in xenon-doped helium nanodroplets

2022-11-30, Langbehn, B., Ovcharenko, Y., Clark, A., Coreno, M., Cucini, R., Demidovich, A., Drabbels, M., Finetti, P., Di Fraia, M., Giannessi, L., Grazioli, C., Iablonskyi, D., LaForge, A.C., Nishiyama, T., Oliver Álvarez de Lara, V., Peltz, C., Piseri, P., Plekan, O., Sander, K., Ueda, K., Fennel, T., Prince, K.C., Stienkemeier, F., Callegari, C., Möller, T., Rupp, D.

We explore the light induced dynamics in superfluid helium nanodroplets with wide-angle scattering in a pump–probe measurement scheme. The droplets are doped with xenon atoms to facilitate the ignition of a nanoplasma through irradiation with near-infrared laser pulses. After a variable time delay of up to 800 ps, we image the subsequent dynamics using intense extreme ultraviolet pulses from the FERMI free-electron laser. The recorded scattering images exhibit complex intensity fluctuations that are categorized based on their characteristic features. Systematic simulations of wide-angle diffraction patterns are performed, which can qualitatively explain the observed features by employing model shapes with both randomly distributed as well as structured, symmetric distortions. This points to a connection between the dynamics and the positions of the dopants in the droplets. In particular, the structured fluctuations might be governed by an underlying array of quantized vortices in the superfluid droplet as has been observed in previous small-angle diffraction experiments. Our results provide a basis for further investigations of dopant–droplet interactions and associated heating mechanisms.