Search Results

Now showing 1 - 2 of 2
  • Item
    (Metallo)porphyrins for potential materials science applications
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2017-8-29) Smykalla, Lars; Mende, Carola; Fronk, Michael; Siles, Pablo F.; Hietschold, Michael; Salvan, Georgeta; Zahn, Dietrich R.T.; Schmidt, Oliver G.; Rüffer, Tobias; Lang, Heinrich
    The bottom-up approach to replace existing devices by molecular-based systems is a subject that attracts permanently increasing interest. Molecular-based devices offer not only to miniaturize the device further, but also to benefit from advanced functionalities of deposited molecules. Furthermore, the molecules itself can be tailored to allow via their self-assembly the potential fabrication of devices with an application potential, which is still unforeseeable at this time. Herein, we review efforts to use discrete (metallo)porphyrins for the formation of (sub)monolayers by surface-confined polymerization, of monolayers formed by supramolecular recognition and of thin films formed by sublimation techniques. Selected physical properties of these systems are reported as well. The application potential of those ensembles of (metallo)porphyrins in materials science is discussed.
  • Item
    Optical properties and electrical transport of thin films of terbium(III) bis(phthalocyanine) on cobalt
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2014) Robaschik, Peter; Siles, Pablo F.; Bülz, Daniel; Richter, Peter; Monecke, Manuel; Fronk, Michael; Klyatskaya, Svetlana; Grimm, Daniel; Schmidt, Oliver G.; Ruben, Mario; Zahn, Dietrich R.T.; Salvan, Georgeta
    The optical and electrical properties of terbium(III) bis(phthalocyanine) (TbPc2) films on cobalt substrates were studied using variable angle spectroscopic ellipsometry (VASE) and current sensing atomic force microscopy (cs-AFM). Thin films of TbPc2 with a thickness between 18 nm and 87 nm were prepared by organic molecular beam deposition onto a cobalt layer grown by electron beam evaporation. The molecular orientation of the molecules on the metallic film was estimated from the analysis of the spectroscopic ellipsometry data. A detailed analysis of the AFM topography shows that the TbPc2 films consist of islands which increase in size with the thickness of the organic film. Furthermore, the cs-AFM technique allows local variations of the organic film topography to be correlated with electrical transport properties. Local current mapping as well as local I–V spectroscopy shows that despite the granular structure of the films, the electrical transport is uniform through the organic films on the microscale. The AFMbased electrical measurements allow the local charge carrier mobility of the TbPc2 thin films to be quantified with nanoscale resolution.