Search Results

Now showing 1 - 2 of 2
  • Item
    Electronic structure and aspects of unconventional superconductivity in NaxCoO2.yH2O
    (São Carlos : Universidade Federal de São Carlos, 2003) Rosner, H.; Drechsler, S.-L.; Fuchs, G.; Handstein, A.; Wälte, A.; Müller, K.-H.
    We examine the electronic structure of NaxCoO2.yH2O within the local density approximation. The parametrization of the band which forms the largest hole-Fermi surface centered at G shows significant deviations from what is frequently assumed in recent sophisticated theoretical studies. In particular, the commonly used nearest neighbor approaches in the framework of single band pictures are found to be unrealistic. The special role of H2O in screening the disorder in the charge reservoir is briefly discussed and compared with the case of Y1–xCaxCu3O6+d.
  • Item
    Coexistence of superconductivity and ferromagnetism in Sr0.5Ce0.5FBiS2-xSex (x = 0.5 and 1.0), a non-U material with Tc < TFM
    (London : Nature Publishing Group, 2016) Thakur, Gohil S.; Fuchs, G.; Nenkov, K.; Haque, Zeba; Gupta, L.C.; Ganguli, A.K.
    We have carried out detailed magnetic and transport studies of the new Sr0.5Ce0.5FBiS2-xSex (0.0 ≤ x ≤ 1.0) superconductors derived by doping Se in Sr0.5Ce0.5FBiS2. Se–doping produces several effects: it suppresses semiconducting–like behavior observed in the undoped Sr0.5Ce0.5FBiS2, the ferromagnetic ordering temperature, TFM, decreases considerably from 7.5 K (in Sr0.5Ce0.5FBiS2) to 3.5 K and the superconducting transition temperature, Tc, gets enhanced slightly to 2.9–3.3 K. Thus in these Se–doped materials, TFM is marginally higher than Tc. Magnetization studies provide evidence of bulk superconductivity in Sr0.5Ce0.5FBiS2-xSex at x ≥ 0.5 in contrast to the undoped Sr0.5Ce0.5FBiS2 (x = 0) where magnetization measurements indicate a small superconducting volume fraction. Quite remarkably, as compared with the effective paramagnetic Ce–moment (~2.2 μB), the ferromagnetically ordered Ce–moment in the superconducting state is rather small (~0.1 μB) suggesting itinerant ferromagnetism. To the best of our knowledge, Sr0.5Ce0.5FBiS2-x Sex (x = 0.5 and 1.0) are distinctive Ce–based bulk superconducting itinerant ferromagnetic materials with Tc < TFM. Furthermore, a novel feature of these materials is that they exhibit a dual and quite unusual hysteresis loop corresponding to both the ferromagnetism and the coexisting bulk superconductivity.