Search Results

Now showing 1 - 10 of 11
  • Item
    Efficient coupling of electro-optical and heat-transport models for broad-area semiconductor lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Radziunas, Mindaugas; Fuhrmann, Jürgen; Zeghuzi, Anissa; Wünsche, Hans-Jürgen; Koprucki, Thomas; Brée, Carsten; Wenzel, Hans; Bandelow, Uwe
    In this work, we discuss the modeling of edge-emitting high-power broad-area semiconductor lasers. We demonstrate an efficient iterative coupling of a slow heat transport (HT) model defined on multiple vertical-lateral laser cross-sections with a fast dynamic electro-optical (EO) model determined on the longitudinal-lateral domain that is a projection of the device to the active region of the laser. Whereas the HT-solver calculates temperature and thermally-induced refractive index changes, the EO-solver exploits these distributions and provides time-averaged field intensities, quasi-Fermi potentials, and carrier densities. All these time-averaged distributions are used repetitively by the HT-solver for the generation of the heat sources entering the HT problem solved in the next iteration step.
  • Item
    Efficient coupling of inhomogeneous current spreading and dynamic electro-optical models for broad-area edge-emitting semiconductor devices
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Radziunas, Mindaugas; Zeghuzi, Anissa; Fuhrmann, Jürgen; Koprucki, Thomas; Wünsche, Hans-Jürgen; Wenzel, Hans; Bandelow, Uwe
    We extend a 2 (space) + 1 (time)-dimensional traveling wave model for broad-area edgeemitting semiconductor lasers by a model for inhomogeneous current spreading from the contact to the active zone of the laser. To speedup the performance of the device simulations, we suggest and discuss several approximations of the inhomogeneous current density in the active zone.
  • Item
    Highly accurate quadrature-based Scharfetter-Gummel schemes for charge transport in degenerate semiconductors
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Patriarca, Matteo; Farrell, Patricio; Fuhrmann, Jürgen; Koprucki, Thomas
    We introduce a family of two point flux expressions for charge carrier transport described by drift-diffusion problems in degenerate semiconductors with non-Boltzmann statistics which can be used in Voronoi finite volume discretizations. In the case of Boltzmann statistics, Scharfetter and Gummel derived such fluxes by solving a linear two point boundary value problem yielding a closed form expression for the flux. Instead, a generalization of this approach to the nonlinear case yields a flux value given implicitly as the solution of a nonlinear integral equation. We examine the solution of this integral equation numerically via quadrature rules to approximate the integral as well as Newtons method to solve the resulting approximate integral equation. This approach results into a family of quadrature-based Scharfetter-Gummel flux approximations. We focus on four quadrature rules and compare the resulting schemes with respect to execution time and accuracy. A convergence study reveals that the solution of the approximate integral equation converges exponentially in terms of the number of quadrature points. With very few integration nodes they are already more accurate than a state-of-the-art reference flux, especially in the challenging physical scenario of high nonlinear diffusion. Finally, we show that thermodynamic consistency is practically guaranteed.
  • Item
    Computational and analytical comparison of flux discretizations for the semiconductor device equations beyond Boltzmann statistics
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Farrell, Patricio; Koprucki, Thomas; Fuhrmann, Jürgen
    For a Voronoi finite volume discretization of the van Roosbroeck system with general charge carrier statistics we compare three thermodynamically consistent numerical fluxes known in the literature. We discuss an extension of the Scharfetter-Gummel scheme to non-Boltzmann (e.g. Fermi-Dirac) statistics. It is based on the analytical solution of a two-point boundary value problem obtained by projecting the continuous differential equation onto the interval between neighboring collocation points. Hence, it serves as a reference flux. The exact solution of the boundary value problem can be approximated by computationally cheaper fluxes which modify certain physical quantities. One alternative scheme averages the nonlinear diffusion (caused by the non-Boltzmann nature of the problem), another one modifies the effective density of states. To study the differences between these three schemes, we analyze the Taylor expansions, derive an error estimate, visualize the flux error and show how the schemes perform for a carefully designed p-i-n benchmark simulation. We present strong evidence that the flux discretization based on averaging the nonlinear diffusion has an edge over the scheme based on modifying the effective density of states.
  • Item
    On thermodynamic consistency of a Scharfetter-Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Koprucki, Thomas; Rotundo, Nella; Farrell, Patricio; Doan, Duy Hai; Fuhrmann, Jürgen
    Driven by applications like organic semiconductors there is an increased interest in numerical simulations based on drift-diffusion models with arbitrary statistical distribution functions. This requires numerical schemes that preserve qualitative properties of the solutions, such as positivity of densities, dissipativity and consistency with thermodynamic equilibrium. An extension of the Scharfetter-Gummel scheme guaranteeing consistency with thermodynamic equilibrium is studied. It is derived by replacing the thermal voltage with an averaged diffusion enhancement for which we provide a new explicit formula. This approach avoids solving the costly local nonlinear equations defining the current for generalized Scharfetter-Gummel schemes.
  • Item
    Convergence of a finite volume scheme to the eigenvalues of a Schrödinger operator
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Koprucki, Thomas; Eymard, Robert; Fuhrmann, Jürgen
    We consider the approximation of a Schrödinger eigenvalue problem arising from the modeling of semiconductor nanostructures by a finite volume method in a bounded domain $OmegasubsetR^d$. In order to prove its convergence, a framework for finite dimensional approximations to inner products in the Sobolev space $H^1_0(Omega)$ is introduced which allows to apply well known results from spectral approximation theory. This approach is used to obtain convergence results for a classical finite volume scheme for isotropic problems based on two point fluxes, and for a finite volume scheme for anisotropic problems based on the consistent reconstruction of nodal fluxes. In both cases, for two- and three-dimensional domains we are able to prove first order convergence of the eigenvalues if the corresponding eigenfunctions belong to $H^2(Omega)$. The construction of admissible meshes for finite volume schemes using the Delaunay-Voronoï method is discussed. As numerical examples, a number of one-, two- and three-dimensional problems relevant to the modeling of semiconductor nanostructures is presented. In order to obtain analytical eigenvalues for these problems, a matching approach is used. To these eigenvalues, and to recently published highly accurate eigenvalues for the Laplacian in the L-shape domain, the results of the implemented numerical method are compared. In general, for piecewise $H^2$ regular eigenfunctions, second order convergence is observed experimentally.
  • Item
    3D electrothermal simulations of organic LEDs showing negative differential resistance
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Liero, Matthias; Fuhrmann, Jürgen; Glitzky, Annegret; Koprucki, Thomas; Fischer, Axel; Reineke, Sebastian
    Organic semiconductor devices show a pronounced interplay between temperature-activated conductivity and self-heating which in particular causes inhomogeneities in the brightness of large-area OLEDs at high power. We consider a 3D thermistor model based on partial differential equations for the electrothermal behavior of organic devices and introduce an extension to multiple layers with nonlinear conductivity laws, which also take the diode-like behavior in recombination zones into account. We present a numerical simulation study for a red OLED using a finite-volume approximation of this model. The appearance of S-shaped current-voltage characteristics with regions of negative differential resistance in a measured device can be quantitatively reproduced. Furthermore, this simulation study reveals a propagation of spatial zones of negative differential resistance in the electron and hole transport layers toward the contact.
  • Item
    Numerical methods for drift-diffusion models
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Farrell, Patricio; Rotundo, Nella; Doan, Duy Hai; Kantner, Markus; Fuhrmann, Jürgen; Koprucki, Thomas
    The van Roosbroeck system describes the semi-classical transport of free electrons and holes in a self-consistent electric field using a drift-diffusion approximation. It became the standard model to describe the current flow in semiconductor devices at macroscopic scale. Typical devices modeled by these equations range from diodes, transistors, LEDs, solar cells and lasers to quantum nanostructures and organic semiconductors. The report provides an introduction into numerical methods for the van Roosbroeck system. The main focus lies on the Scharfetter-Gummel finite volume disretization scheme and recent efforts to generalize this approach to general statistical distribution functions.
  • Item
    Electronic states in semiconductor nanostructures and upscaling to semi-classical models
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Koprucki, Thomas; Kaiser, Hans-Christoph; Fuhrmann, Jürgen
    In semiconductor devices one basically distinguishes three spatial scales: The atomistic scale of the bulk semiconductor materials (sub-Angstroem), the scale of the interaction zone at the interface between two semiconductor materials together with the scale of the resulting size quantization (nanometer) and the scale of the device itself (micrometer). The paper focuses on the two scale transitions inherent in the hierarchy of scales in the device. We start with the description of the band structure of the bulk material by kp Hamiltonians on the atomistic scale. We describe how the envelope function approximation allows to construct kp Schroedinger operators describing the electronic states at the nanoscale which are closely related to the kp Hamiltonians. Special emphasis is placed on the possible existence of spurious modes in the kp Schroedinger model on the nanoscale which are inherited from anomalous band bending on the atomistic scale. We review results of the mathematical analysis of these multi-band kp Schroedinger operators. Besides of the confirmation of the main facts about the band structure usually taken for granted ...
  • Item
    Comparison of thermodynamically consistent charge carrier flux discretizations for Fermi-Dirac and Gauss-Fermi statistics
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Farrell, Patricio; Patriarca, Matteo; Fuhrmann, Jürgen; Koprucki, Thomas
    We compare three thermodynamically consistent ScharfetterGummel schemes for different distribution functions for the carrier densities, including the FermiDirac integral of order 1/2 and the GaussFermi integral. The most accurate (but unfortunately also most costly) generalized ScharfetterGummel scheme requires the solution of an integral equation. We propose a new method to solve this integral equation numerically based on Gauss quadrature and Newtons method. We discuss the quality of this approximation and plot the resulting currents for FermiDirac and GaussFermi statistics. Finally, by comparing two modified (diffusion-enhanced and inverse activity based) ScharfetterGummel schemes with the more accurate generalized scheme, we show that the diffusion-enhanced ansatz leads to considerably lower flux errors, confirming previous results (J. Comp. Phys. 346:497-513, 2017).