Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Signatures of a magnetic field-induced unconventional nematic liquid in the frustrated and anisotropic spin-chain cuprate LiCuSbO4

2017, Grafe, H.-J., Nishimoto, S., Iakovleva, M., Vavilova, E., Spillecke, L., Alfonsov, A., Sturza, M.-I., Wurmehl, S., Nojiri, H., Rosner, H., Richter, J., Rößler, U.K., Drechsler, S.-L., Kataev, V., Büchner, B.

Modern theories of quantum magnetism predict exotic multipolar states in weakly interacting strongly frustrated spin-1/2 Heisenberg chains with ferromagnetic nearest neighbor (NN) inchain exchange in high magnetic fields. Experimentally these states remained elusive so far. Here we report strong indications of a magnetic field-induced nematic liquid arising above a field of ~13 T in the edge-sharing chain cuprate LiSbCuO4 ≡ LiCuSbO4. This interpretation is based on the observation of a field induced spin-gap in the measurements of the 7Li NMR spin relaxation rate T1−1 as well as a contrasting field-dependent power-law behavior of T1−1 vs. T and is further supported by static magnetization and ESR data. An underlying theoretical microscopic approach favoring a nematic scenario is based essentially on the NN XYZ exchange anisotropy within a model for frustrated spin-1/2 chains and is investigated by the DMRG technique. The employed exchange parameters are justified qualitatively by electronic structure calculations for LiCuSbO4.

Loading...
Thumbnail Image
Item

Two distinct superconducting phases in LiFeAs

2016, Nag, P.K., Schlegel, R., Baumann, D., Grafe, H.-J., Beck, R., Wurmehl, S., Büchner, B., Hess, C.

A non-trivial temperature evolution of superconductivity including a temperature-induced phase transition between two superconducting phases or even a time-reversal symmetry breaking order parameter is in principle expected in multiband superconductors such as iron-pnictides. Here we present scanning tunnelling spectroscopy data of LiFeAs which reveal two distinct superconducting phases: at = 18 K a partial superconducting gap opens, evidenced by subtle, yet clear features in the tunnelling spectra, i.e. particle-hole symmetric coherence peak and dip-hump structures. At Tc = 16 K, these features substantiate dramatically and become characteristic of full superconductivity. Remarkably, the distance between the dip-hump structures and the coherence peaks remains practically constant in the whole temperature regimeT ≤ . This rules out the connection of the dip-hump structures to an antiferromagnetic spin resonance.