Search Results

Now showing 1 - 3 of 3
  • Item
    Terahertz quantum-cascade lasers for high-resolution absorption spectroscopy of atoms and ions in plasmas
    (Bristol : IOP Publ., 2023) Lü, X.; Röben, B.; Biermann, K.; Wubs, J.R.; Macherius, U.; Weltmann, K.-D.; van Helden, J.H.; Schrottke, L.; Grahn, H.T.
    We report on terahertz (THz) quantum-cascade lasers (QCLs) based on GaAs/AlAs heterostructures, which exhibit single-mode emission at 3.360, 3.921, and 4.745 THz. These frequencies are in close correspondence to fine-structure transitions of Al atoms, N+ ions, and O atoms, respectively. Due to the low electrical pump power of these THz QCLs, they can be operated in a mechanical cryocooler in continuous-wave mode, while a sufficient intrinsic tuning range of more than 5 GHz is maintained. The single-mode operation and the intrinsic tuning range of these THz QCLs allow for the application of these lasers as radiation sources for high-resolution absorption spectroscopy to determine the absolute densities of Al atoms, N+ ions, and O atoms in plasmas.
  • Item
    Terahertz quantum-cascade lasers for high-resolution absorption spectroscopy of atoms and ions in plasmas
    (Bristol : IOP Publ., 2023) Lü, X.; Röben, B.; Biermann, K.; Wubs, J.R.; Macherius, U.; Weltmann, K.-D.; van Helden, J.H.; Schrottke, L.; Grahn, H.T.
    We report on terahertz (THz) quantum-cascade lasers (QCLs) based on GaAs/AlAs heterostructures, which exhibit single-mode emission at 3.360, 3.921, and 4.745 THz. These frequencies are in close correspondence to fine-structure transitions of Al atoms, N+ ions, and O atoms, respectively. Due to the low electrical pump power of these THz QCLs, they can be operated in a mechanical cryocooler in continuous-wave mode, while a sufficient intrinsic tuning range of more than 5 GHz is maintained. The single-mode operation and the intrinsic tuning range of these THz QCLs allow for the application of these lasers as radiation sources for high-resolution absorption spectroscopy to determine the absolute densities of Al atoms, N+ ions, and O atoms in plasmas.
  • Item
    Terahertz absorption spectroscopy for measuring atomic oxygen densities in plasmas
    (Bristol : IOP Publ., 2023) Wubs, J.R.; Macherius, U.; Weltmann, K.-D.; Lü, X.; Röben, B.; Biermann, K.; Schrottke, L.; Grahn, H.T.; van Helden, J.H.
    This paper describes the first implementation of terahertz (THz) quantum cascade lasers for high-resolution absorption spectroscopy on plasmas. Absolute densities of ground state atomic oxygen were directly obtained by using the fine structure transition at approximately 4.75 THz. Measurements were performed on a low-pressure capacitively coupled radio frequency oxygen discharge. The detection limit in this arrangement was found to be 2 × 10 13 cm−3, while the measurement accuracy was within 5%, as demonstrated by reference measurements of a well-defined ammonia transition. The results show that the presented method is well suited to measure atomic oxygen densities, and it closes the THz gap for quantitative atomic density measurements in harsh environments such as plasmas.